Computer Science ›› 2024, Vol. 51 ›› Issue (11): 389-399.doi: 10.11896/jsjkx.230900028
• Information Security • Previous Articles Next Articles
LI Chunjiang1, YIN Shaoping1, CHI Haotian1, YANG Jing1,3, GENG Haijun1,2,3
CLC Number:
[1] KREUTZ D,RAMOS F M V,VERISSIMO P E,et al.Software-defined networking:A comprehensive survey[J].Proceedings of the IEEE,2014,103(1):14-76. [2] FEAMSTER N,REXFORD J,ZEGURA E.The road to SDN:an intellectual history of programmable networks[J].ACM SIGCOMM Computer Communication Review,2014,44(2):87-98. [3] ORDONEZ-LUCENA J,AMEIGEIRAS P,LOPEZ D,et al.Network slicing for 5G with SDN/NFV:Concepts,architectures,and challenges[J].IEEE Communications Magazine,2017,55(5):80-87. [4] YANG M,LI Y,JIN D,et al.OpenRAN:a software-defined ran architecture via virtualization[J].ACM SIGCOMM computer communication review,2013,43(4):549-550. [5] TRIVISONNO R,GUERZONI R,VAISHNAVI I,et al.SDN-based 5G mobile networks:architecture,functions,procedures and backward compatibility[J].Transactions on Emerging Telecommunications Technologies,2015,26(1):82-92. [6] LI D,CHEN G H,REN F Y,et al.Data Center Network Research Progress and Trends[J].Chinese Journal of Computers,2014,37(2):259-274. [7] SON J,BUYYA R.A taxonomy of software-defined networking(SDN)-enabled cloud computing[J].ACMComputing Surveys(CSUR),2018,51(3):1-36. [8] WANG M M,LIU J W,CHEN J,et al.Software Defined Networking:Security Model,Threats and Mechanism[J].Journal of Software,2016,27(4):970-987. [9] DEB R,ROY S.A comprehensive survey of vulnerability and information security in SDN[J].Computer Networks,2022,206:108802. [10] BAWANY N Z,SHAMSI J A,SALAH K.DDoS attack detection and mitigation using SDN:methods,practices,and solutions[J].Arabian Journal for Science and Engineering,2017,42:425-441. [11] LIU Z,JIN H,HU Y C,et al.Practical proactive DDoS-attack mitigation via endpoint-driven in-network traffic control[J].IEEE/ACM Transactions on Networking,2018,26(4):1948-1961. [12] BHATIA S,BEHAL S,AHMED I.Distributed denial of service attacks and defense mechanisms:current landscape and future directions[J].Versatile Cybersecurity,2018:55-97. [13] KAUR S,KUMAR K,AGGARWAL N,et al.A comprehensive survey of DDoS defense solutions in SDN:Taxonomy,research challenges,and future directions[J].Computers & Security,2021,110:102423. [14] REVATHI M,RAMALINGAM V V,AMUTHA B.A machine learning based detection and mitigation of the DDOS attack by using SDN controller framework[J].Wireless Personal Communications,2022,127(3):2417-2441. [15] TAYFOUR O E,MARSONO M N.Collaborative detection and mitigation of DDoS in software-defined networks[J].The Journal of Supercomputing,2021,77:13166-13190. [16] NOORIBAKHSH M,MOLLAMOTALEBI M.A review on statistical approaches for anomaly detection in DDoS attacks[J].Information Security Journal:A Global Perspective,2020,29(3):118-133. [17] JIA K,WANG J N,LIU F.DDoS detection and mitigationFramework in SDN[J].Journal of Cyber Security,2021,6(1):17-31 [18] WANG R,JIA Z,JU L.An entropy-based distributed DDoS detection mechanism in software-defined networking[C]//2015 IEEE Trustcom/BigDataSE/ISPA.IEEE,2015,1:310-317. [19] LIU Z,HU C,SHAN C.Riemannian manifold on stream data:Fourier transform and entropy-based DDoS attacks detection method[J].Computers & Security,2021,109:102392. [20] FOULADI R F,ERMI O,ANARIM E.A DDoS attack detection and countermeasure scheme based on DWT and auto-encoder neural network for SDN[J].Computer Networks,2022,214:109140. [21] ZHAO P,ZHAO W T,FU Z J,et al.SDN self-protection system based on Renyi entropy[J].Chinese Journal of Network and Information Security,2021,7(3):85-94. [22] SWAMI R,DAVE M,RANGA V.Defending DDoS against software defined networks using entropy[C]//2019 4th International Conference on Internet of Things:Smart Innovation and Usages(IoT-SIU).IEEE,2019:1-5. [23] MIRSKY Y,DOITSHMAN T,ELOVICI Y,et al.Kitsune:anensemble of autoencoders for online network intrusion detection[J].arXiv:1802.09089,2018. [24] CHETOUANE A,KAROUI K.A survey of machine learning methods for DDoS threats detection against SDN[C]//Distributed Computing for Emerging Smart Networks:Third International Workshop,DiCES-N 2022,Bizerte,Tunisia.Springer International Publishing,2022:99-127. [25] TSOBDJOU L D,PIERRE S,QUINTERO A.An online entropy-based DDoS flooding attack detection system with dynamic threshold[J].IEEE Transactions on Network and Service Ma-nagement,2022,19(2):1679-1689. [26] AHALAWAT A,BABU K S,TURUK A K,et al.A low-rate DDoS detection and mitigation for SDN using Rényi Entropy with Packet Drop[J].Journal of Information Security and Applications,2022,68:103212. [27] FOULADI R F,ERMI O,ANARIM E.A DDoS attack detection and defense scheme using time-series analysis for SDN[J].Journal of Information Security and Applications,2020,54:102587. [28] ISA M M,MHAMDI L.Hybrid Deep Autoencoder with Random Forest in Native SDN Intrusion Detection Environment[C]//ICC 2022-IEEE International Conference on Communications.IEEE,2022:1698-1703. [29] TAN L,PAN Y,WU J,et al.A new framework for DDoS attack detection and defense in SDN environment[J].IEEE Access,2020,8:161908-161919. [30] WANG L,LIU Y.A DDoS attack detection method based on information entropy and deep learning in SDN[C]//2020 IEEE 4th Information Technology,Networking,Electronic and Automation Control Conference(ITNEC).IEEE,2020,1:1084-1088. [31] ZHANG L,WANG J S.DDoS Attack Detection Model Based on Information Entropy and DNN in SDN[J].Journal of Computer Research and Development,2019,56(5):909-918. [32] WANG T,GUO Z,CHEN H,et al.BWManager:Mitigating denial of service attacks in software-defined networks through bandwidth prediction[J].IEEE Transactions on Network and Service Management,2018,15(4):1235-1248. |
[1] | LI Zhe, LIU Yiyang, WANG Ke, YANG Jie, LI Yafei, XU Mingliang. Real-time Prediction Model of Carrier Aircraft Landing Trajectory Based on Stagewise Autoencoders and Attention Mechanism [J]. Computer Science, 2024, 51(9): 273-282. |
[2] | XU Bei, LIU Tong. Semi-supervised Emotional Music Generation Method Based on Improved Gaussian Mixture Variational Autoencoders [J]. Computer Science, 2024, 51(8): 281-296. |
[3] | CHEN Jie, JIN Linjiang, ZHENG Hongbo, QIN Xujia. Deep Feature Learning and Feature Clustering of Streamlines in 3D Flow Fields [J]. Computer Science, 2024, 51(7): 221-228. |
[4] | YUAN Zhen, LIU Jinfeng. Denoising Autoencoders Based on Lossy Compress Coding [J]. Computer Science, 2024, 51(6A): 230400172-7. |
[5] | ZHANG Jie, LU Miaoxin, LI Jiakang, XU Dayong, HUANG Wenxiao, SHI Xiaoping. Residual Dense Convolutional Autoencoder for High Noise Image Denoising [J]. Computer Science, 2024, 51(6A): 230400073-7. |
[6] | ZHAO Ziqi, YANG Bin, ZHANG Yuanguang. Hierarchical Traffic Flow Prediction Model Based on Graph Autoencoder and GRU Network [J]. Computer Science, 2024, 51(6A): 230400148-6. |
[7] | PENG Bo, LI Yaodong, GONG Xianfu. Improved K-means Photovoltaic Energy Data Cleaning Method Based on Autoencoder [J]. Computer Science, 2024, 51(6A): 230700070-5. |
[8] | WU Huinan, XING Hongjie, LI Gang. Deep Multiple-sphere Support Vector Data Description Based on Variational Autoencoder with Mixture-of-Gaussians Prior [J]. Computer Science, 2024, 51(6): 135-143. |
[9] | LI Shasha, XING Hongjie. Robust Anomaly Detection Based on Adversarial Samples and AutoEncoder [J]. Computer Science, 2024, 51(5): 363-373. |
[10] | GE Yinchi, ZHANG Hui, SUN Haohang. Differential Privacy Data Synthesis Method Based on Latent Diffusion Model [J]. Computer Science, 2024, 51(3): 30-38. |
[11] | CHEN Meng, QIAN Rongrong, ZHU Yujia, HUANG Zhenguo. Method of Outdoor CSI Feedback for Massive MIMO Systems Based on Deep Autoencoder [J]. Computer Science, 2024, 51(11A): 231000191-6. |
[12] | LI Qiaojun, ZHANG Wen, YANG Wei. Fusion Neural Network-based Method for Predicting LncRNA-disease Association [J]. Computer Science, 2023, 50(8): 226-232. |
[13] | LI Hui, LI Wengen, GUAN Jihong. Dually Encoded Semi-supervised Anomaly Detection [J]. Computer Science, 2023, 50(7): 53-59. |
[14] | WANG Qingyu, WANG Hairui, ZHU Guifu, MENG Shunjian. Study on SQL Injection Detection Based on FlexUDA Model [J]. Computer Science, 2023, 50(6A): 220600172-6. |
[15] | RAO Dan, SHI Hongwei. Study on Air Traffic Flow Recognition and Anomaly Detection Based on Deep Clustering [J]. Computer Science, 2023, 50(3): 121-128. |
|