Computer Science ›› 2024, Vol. 51 ›› Issue (9): 103-111.doi: 10.11896/jsjkx.230700007
• High Performance Computing • Previous Articles Next Articles
TU Yuanjie1, CHENG Baolei1, WANG Yan1, HAN Yuejuan2, FAN Jianxi1
CLC Number:
[1]SAAD Y,SCHULTZ M H.Topological properties of hyper-cubes[J].IEEE Transactions on Computers,1988,37(7):867-872. [2]CONDON P,DIAZ A E,GIRAO A,et al.Hamiltonicity of random subgraphs of the hypercube[C]//Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms(SODA).Society for Industrial and Applied Mathematics,2021:889-898. [3]ZHANG S,LIANG D,CHEN L,et al.The component diagno-sability of hypercubes with large-scale faulty nodes[J].The Computer Journal,2022,65(5):1129-1143. [4]WEI C C,HSIEH S Y.Random and conditional (t,k)-diagnosis of hypercubes[J].Algorithmica,2017,79(3):625-644. [5]YANG W,MENG J.Extraconnectivity of hypercubes[J].Applied Mathematics Letters,2009,22(6):887-891. [6]PREPARATA F P,METZE G,CHIEN R T.On the connection assignment problem of diagnosable systems[J].IEEE Transactions on Electronic Computers,1967,EC-16(6):848-854. [7]MAENG J,MALEK M.A comparison connection assignmentfor self-diagnosis of multiprocessor systems[C]//Proceedings-11th Annual International Symposium on Fault-Tolerant Computing.IEEE Computer Society,1981:173-175. [8]BARSI F,GRANDONI F,MAESTRINI P.A theory of diagno-sability of digital systems[J].IEEE Transactions on Compu-ters,1976,25(6):585-593. [9]PENG S L,LIN C K,TAN J J M,et al.The g-good-neighbor conditional diagnosability of hypercube under PMC model[J].Applied Mathematics and Computation,2012,218(21):10406-10412. [10]DING T,XU M.Relationship between diagnosability and non-inclusive diagnosability of triangle-free connected graphs under the PMC model[J].Theoretical Computer Science,2023,944:113676. [11]YUAN J,QIAO H,LIU A.The upper and lower bounds of Rg-conditional diagnosability of networks[J].Information Proces-sing Letters,2022,176:106248. [12]WEI Y,XU M.Conditional diagnosability of Cayley graphs ge-nerated by wheel graphs under the PMC model[J].Theoretical Computer Science,2021,849:163-172. [13]MA M J,XU M,DING T T,et al.The non-inclusion diagno-sability of hypercubes under the PMC model[J].Journal of the Operations Research Society of China,2022,6:1-7. [14]ZHU Q,THULASIRAMAN K,NAIK K,et al.Symmetric PMC model of diagnosis,b-matchings in graphs and fault identification in t-diagnosable systems[J].Theoretical Computer Science,2021,891:35-49. [15]HAKIMI S L,AMIN A T.Characterization of connection as-signment of diagnosable systems[J].IEEE Transactions on Computers,1974,23(1):86-88. [16]SULLIVAN G.A polynomial time algorithm for fault diagno-sability[C]//IEEE 25th Annual Symposium on Foundations of Computer Science.IEEE Computer Society Press,1984:148-156. [17]LAI P L,TAN J J M,CHANG C P,et al.Conditional diagnosability measures for large multiprocessor systems[J].IEEE Transactions on Computers,2005,54(2):165-175. [18]LIU H,HU X,GAO S.The g-good neighbor conditional diagnosability of twisted hypercubes under the PMC and MM* model[J].Applied Mathematics and Computation,2018,332:484-492. [19]WEI Y L,XU M.The g-good-neighbor conditional diagnosability of locally twisted cubes[J].Journal of the Operations Research Society of China,2018,6(2):333-347. [20]GUO J,LI D,LU M.The g-good-neighbor conditional diagno-sability of the crossed cubes under the PMC and MM* model[J].Theoretical Computer Science,2019,755:81-88. [21]JUN Y,AIXIA L,XUE M,et al.The g-good-neighbor conditional diagnosability of k-ary n-cubes under the PMC model and MM* model[J].IEEE Transactions on Parallel and Distributed Systems,2014,26(4):1165-1177. [22]ZHANG S,YANG W.The g-extra conditional diagnosabilityand sequential t/k-diagnosability of hypercubes[J].InternationalJournal of Computer Mathematics,2016,93(3):482-497. [23]WANG X,HUANG L,SUN Q,et al.The g-extra diagnosability of the balanced hypercube under the PMC and MM* model[J].The Journal of Supercomputing,2022,78(5):6995-7015. [24]CHENG E,QIU K,SHEN Z.On the g-extra diagnosability of enhanced hypercubes[J].Theoretical Computer Science,2022,921:6-19. [25]WANG S,MA X.The g-extra connectivity and diagnosability of crossed cubes[J].Applied Mathematics and Computation,2018,336:60-66. [26]BONDY J A,MURTY U S R.Graph theory with applications[M].London:Macmillan,1976. [27]LI X,LIN C K,FAN J,et al.Relationship between extra connectivity and component connectivity in networks[J].The Computer Journal,2021,64(1):38-53. [28]DAHBURA A T,MASSON G M.An O(n2.5) fault identification algorithm for diagnosable systems[J].IEEE Transactions on Computers,1984,33(6):486-492. [29]LEIGHTON F T.Introduction to parallel algorithms and ar-chitectures:arrays. trees. hypercubes[M].San Mateo:Else-vier,1992. [30]LATIFI S,HEGDE M,NARAGHI-POUR M.Conditional connectivity measures for large multiprocessor systems[J].IEEE Transactions on Computers,1994,43(2):218-222. [31]OH A D,CHOI H A.Generalized measures of fault tolerance in n-cube networks[J].IEEE Transactions on Parallel and Distri-buted Systems,1993,4(6):702-703. [32]ZHU Q,XU J M.On restricted edge connectivity and extra edge connectivity of hypercubes and folded hypercubes[J].Journal of University of Science and Technology of China,2006,36(3):249-253. |
[1] | LI Xiajing, CHENG Baolei, FAN Jianxi, WANG Yan, LI Xiaorui. Parallel Construction of Edge-independent Spanning Trees in Augmented Cubes [J]. Computer Science, 2024, 51(9): 346-356. |
[2] | XU Jia-qing, HU Xiao-yue, TANG Fu-qiao, WANG Qiang, HE Jie. Detecting Blocking Failure in High Performance Interconnection Networks Based on Random Forest [J]. Computer Science, 2021, 48(6): 246-252. |
[3] | FENG Kai, MA Xin-yu. Subnetwork Reliability of (n,k)-bubble-sort Networks [J]. Computer Science, 2021, 48(4): 43-48. |
[4] | WANG Yun-xiao, ZHAO Li-na, MA Lin, LI Ning, LIU Zi-yan, ZHANG Jie. TCAM Multi-field Rule Coding Technique Based on Hypercube [J]. Computer Science, 2021, 48(11A): 490-494. |
[5] | XIE Wen-kang, FAN Wei-bei, ZHANG Yu-jie, XU He, LI Peng. ENLHS:Sampling Approach to Auto Tuning Kafka Configurations [J]. Computer Science, 2020, 47(8): 119-126. |
[6] | FENG Kai, LI Jing. Study on Subnetwork Reliability of k-ary n-cubes [J]. Computer Science, 2020, 47(7): 31-36. |
[7] | SHI Teng and SHI Hai-zhong. Model of Cartesian Product of Modulo p Residual Class Addition Group for Interconnection Networks [J]. Computer Science, 2020, 47(6A): 299-304. |
[8] | GUO Yang, LIANG Jia-rong, LIU Feng, XIE Min. Novel Fault Diagnosis Parallel Algorithm for Hypercube Networks [J]. Computer Science, 2019, 46(5): 73-76. |
[9] | SHI Hai-zhong and SHI Yue. M-layers Binary Graph Model for Interconnection Networks [J]. Computer Science, 2017, 44(Z11): 308-311. |
[10] | LIN Cheng-kuan, ZHAO Yuan, FAN Jian-xi and CHENG Bao-lei. Research on Completely Independent Spanning Trees Based on Degree of Vertices [J]. Computer Science, 2017, 44(6): 94-96. |
[11] | CHEN Miao-jiang, LIANG Jia-rong and ZHANG Qian. Hypercube Network Diagnosis Algorithm under Comparison Model [J]. Computer Science, 2017, 44(6): 83-90. |
[12] | XU Jing, REN Kai-jun and LI Xiao-yong. Parallel Algorithm Design and Optimization of Range Query for Meteorological Data Retrieval [J]. Computer Science, 2017, 44(3): 42-47. |
[13] | YANG Yu-xing and QIU Ya-na. Sub-network Preclusion in (n,k)-bubble-sort Networks [J]. Computer Science, 2017, 44(11): 264-267. |
[14] | SHI Hai-zhong, CHANG Li-ting, ZHAO Yuan, ZHANG Xin and WANG Hai-feng. Hamiltonian Decomposition of 2r-regular Graph Connected Cycles Networks [J]. Computer Science, 2016, 43(Z11): 304-307. |
[15] | XU Xi-rong, HUANG Ya-zhen, ZHANG Si-jia and DONG Xue-zhi. Feedback Numbers of Generalized Kautz Digraphs GK(3,n) [J]. Computer Science, 2016, 43(5): 13-21. |
|