Computer Science ›› 2024, Vol. 51 ›› Issue (11): 340-346.doi: 10.11896/jsjkx.231000121
• Information Security • Previous Articles Next Articles
GONG Siyue, LIU Hui, WANG Baohui
CLC Number:
[1] CNCERT.Analysis Report on China’s Internet Network Secu-rity Monitoring Data in the First Half of 2021[EB/OL].(2021-07-31)[2023-08-15].https://www.cert.org.cn/publish/main/46/2021/20210731090556980286517/20210731090556980286517_.html. [2] JON O.Network Traffic Analysis (NTA):A Cybersecurity‘Quick Win’[EB/OL].[2023-08-15].https://www.cisco.com/c/dam/en/us/products/collateral/security/stealthwatch/stealthwatch-esg-wp.pdf. [3] LI Y,GUO H,HOU J,et al.A Survey of Encrypted Malicious Traffic Detection[C]//2021 International Conference on Communications,Computing,Cybersecurity,and Informatics.IEEEComputer Society,2021:1-7. [4] FANG Y,XU Y,HUANG C,et al.Against malicious SSL/TLS encryption:identify malicious traffic based on random forest[C]//Fourth International Congress on Information and Communication Technology.Springer,2020:99-115. [5] KHRAISAT A,GONDAL I,VAMPLEW P.An anomaly intrusion detection system using C5 decision tree classifier[C]//Pacific-Asia Conference on Knowledge Discovery and Data Mining.Springer,2018:149-155. [6] LI Y,XIA J,ZHANG S,et al.An efficient intrusion detectionsystem based on support vector machines and gradually feature removal method[J].Expert Systems with Applications,2012,39(1):424-430. [7] LIN W,KE S,TSAI C.CANN:An intrusion detection system based on combining cluster centers and nearest neighbors[J].Knowledge-based Systems,2015,78:13-21. [8] ASHKARI A H.CICFlowmeter-V4.0 (formerly known asISCXFlowMeter) is a network traffic Bi-flow generator and analyser for anomaly detection[EB/OL].[2021-07-05].https://github.com/ahlashkari/CICFlowMeter. [9] ASHKARI A H,DRAPER-GIL G,MAMUN M S I,et al.Cha-racterization of tor traffic using time based features[C]//International Conference on Information Systems Security and Privacy.2017:253-262. [10] WANG W,ZHU M,WANG J,et al.End-to-end encrypted traffic classification with one-dimensional convolution neural networks[C]//2017 IEEE International Conference on Intelligence and Security Informatics.IEEE,2017:43-48. [11] BAZUHAIR W,LEE W.Detecting malign encrypted networktraffic using perlin noise and convolutional neural network[C]//2020 10th Annual Computing and Communication Workshop and Conference.IEEE,2020:200-206. [12] CHENG J,HE R,E Y P,et al.Real-time encrypted traffic classification via lightweight neural networks[C]//GLOBECOM 2020-2020 IEEE Global Communications Conference.IEEE,2020:1-6. [13] ZOU Y,ZHANG J,JIANG B.Detection Of Malicious Encrypted Traffic Based on Lstm Recurrent Neural Network[J].Compu-ter Applications and Software,2020,37(2):308-312. [14] LIN X,XIONG G,GOU G,et al.ET-BERT:A Contextualized Datagram Representation with Pre-training Transformers for Encrypted Traffic Classification[C]//Proceedings of the ACM Web Conference 2022.2022:633-642. [15] ZENG Y,GU H,WEI W,et al.a deep learning based network encrypted traffic classification and intrusion detection framework[J].IEEE Access,2019,7:45182-45190. [16] BADER O,LICHY A,HAJAJ C,et al.MalDIST:From encryp-ted traffic classification to malware traffic detection and classification[C]//2022 IEEE 19th Annual Consumer Communications &Networking Conference.IEEE,2022:527-533. [17] GU Y H,XU H,ZHANG X Q.Encrypted malicious traffic detection based on multi-granularity characterization learning[J].Journal of Computing,2023,46(9):1888-1899. [18] WEI J H,ZHENG R F,LIU J Y.Research on malicious TLStraffic identification based on hybrid neural network[J].Computer Engineering and Applications,2021,57(7):107-114. [19] DEVLIN J,CHANG M,LEE K,et al.Bert:Pre-training of deep bidirectional transformers for language understanding[J].ar-Xiv:1810.04805,2018. [20] 国家密码管理局.随机性检测规范[EB/OL].(2021-10-19)[2023-08-15].https://std.samr.gov.cn/hb/search/stdHBDetailed?id=E66CC4F6F8D78B7FE05397BE0A0A6C55. [21] ANDREW R,JUAN S,JAMES N,et al.SP 800-22 Rev.1a,A Statistical Test Suite for RNGs and PRNGs for Crypto Apps | CSRC[EB/OL].(2010-04-01)[2023-07-16].https://csrc.nist.gov/publications/detail/sp/800-22/rev-1a/final. [22] CACHIN C.Smooth entropy and Rényi entropy[C]//Interna-tional Conference on the Theory and Applications of Cryptographic Techniques.Springer,1997:193-208. [23] DataCon社区.DataCon开放数据集-DataCon2020-加密恶意流量数据集方向开放数据集[EB/OL].(2021-11-11)[2023-08-15].https://datacon.qianxin.com/opendata/openpage?resourcesId=6. |
[1] | HUANG Xiaofei, GUO Weibin. Multi-modal Fusion Method Based on Dual Encoders [J]. Computer Science, 2024, 51(9): 207-213. |
[2] | LI Zhe, LIU Yiyang, WANG Ke, YANG Jie, LI Yafei, XU Mingliang. Real-time Prediction Model of Carrier Aircraft Landing Trajectory Based on Stagewise Autoencoders and Attention Mechanism [J]. Computer Science, 2024, 51(9): 273-282. |
[3] | LI Zhi, LIN Sen, ZHANG Qiang. Edge Cloud Computing Approach for Intelligent Fault Detection in Rail Transit [J]. Computer Science, 2024, 51(9): 331-337. |
[4] | XU Bei, LIU Tong. Semi-supervised Emotional Music Generation Method Based on Improved Gaussian Mixture Variational Autoencoders [J]. Computer Science, 2024, 51(8): 281-296. |
[5] | CHEN Jie, JIN Linjiang, ZHENG Hongbo, QIN Xujia. Deep Feature Learning and Feature Clustering of Streamlines in 3D Flow Fields [J]. Computer Science, 2024, 51(7): 221-228. |
[6] | GAN Run, WEI Xianglin, WANG Chao, WANG Bin, WANG Min, FAN Jianhua. Backdoor Attack Method in Autoencoder End-to-End Communication System [J]. Computer Science, 2024, 51(7): 413-421. |
[7] | LIU Xiaohu, CHEN Defu, LI Jun, ZHOU Xuwen, HU Shan, ZHOU Hao. Speaker Verification Network Based on Multi-scale Convolutional Encoder [J]. Computer Science, 2024, 51(6A): 230700083-6. |
[8] | GUI Haitao, WANG Zhongqing. Personalized Dialogue Response Generation Combined with Conversation State Information [J]. Computer Science, 2024, 51(6A): 230800055-7. |
[9] | YUAN Zhen, LIU Jinfeng. Denoising Autoencoders Based on Lossy Compress Coding [J]. Computer Science, 2024, 51(6A): 230400172-7. |
[10] | ZHANG Jie, LU Miaoxin, LI Jiakang, XU Dayong, HUANG Wenxiao, SHI Xiaoping. Residual Dense Convolutional Autoencoder for High Noise Image Denoising [J]. Computer Science, 2024, 51(6A): 230400073-7. |
[11] | ZHAO Ziqi, YANG Bin, ZHANG Yuanguang. Hierarchical Traffic Flow Prediction Model Based on Graph Autoencoder and GRU Network [J]. Computer Science, 2024, 51(6A): 230400148-6. |
[12] | PENG Bo, LI Yaodong, GONG Xianfu. Improved K-means Photovoltaic Energy Data Cleaning Method Based on Autoencoder [J]. Computer Science, 2024, 51(6A): 230700070-5. |
[13] | WU Huinan, XING Hongjie, LI Gang. Deep Multiple-sphere Support Vector Data Description Based on Variational Autoencoder with Mixture-of-Gaussians Prior [J]. Computer Science, 2024, 51(6): 135-143. |
[14] | LI Zekai, BAI Zhengyao, XIAO Xiao, ZHANG Yihan, YOU Yilin. Point Cloud Upsampling Network Incorporating Transformer and Multi-stage Learning Framework [J]. Computer Science, 2024, 51(6): 231-238. |
[15] | LIAO Junshuang, TAN Qinhong. DETR with Multi-granularity Spatial Attention and Spatial Prior Supervision [J]. Computer Science, 2024, 51(6): 239-246. |
|