Computer Science ›› 2024, Vol. 51 ›› Issue (11A): 231100160-6.doi: 10.11896/jsjkx.231100160
• Image Processing & Multimedia Technology • Previous Articles Next Articles
ZHAO Ruonan, LI Duo, SONG Jiangling, ZHANG Rui
CLC Number:
[1]PHAN H,MIKKELSEN K.Automatic sleep staging of EEGsignals:recent development,challenges,and future directions[J].Physiological Measurement,2022,43(4):04TR01. [2]EFE E,OZSEN S.CoSleepNet:Automated sleep staging using a hybrid CNN-LSTM network on imbalanced EEG-EOG datasets[J].Biomedical Signal Processing and Control,2023,80:104299. [3]China Sleep Research Society.2023 Chinese nationalhealthysleep white paper[R].Beijing:China Sleep Research Society,2023. [4]BERRY R B,BROOKS R,GAMALDO C E,et al.The AASMmanual for the scoring of sleep and associated events[J].Rules,Terminology and Technical Specifications,Darien,Illinois,American Academy of Sleep Medicine,2012,176:2012. [5]PEI W,LI Y,SIULY S,et al.A hybrid deep learning scheme for multi-channel sleep stage classification[J].Computers,Materials and Continua,2022,71(1):889-905. [6]XU X,CHEN C,MENG K,et al.NAMRTNet:Automatic classification of sleep stages based on imp-roved ResNet-TCN network and attention mechanism[J].Applied Sciences,2023,13(11):6788. [7]PHAN H,MIKKELSEN K,CHÉN O Y,et al.Sleeptransfor-mer:Automatic sleep staging with interpretability and uncertainty quantification[J].IEEE Transactions on Biomedical Engineering,2022,69(8):2456-2467. [8]LI Y,PENG C,ZHANG Y,et al.Adversarial Learning forSemisupervised Pediatric Sleep Staging with Single-EEG Channel[J].Methods,2022,204:84-91. [9]ZHU T,LUO W,YU F.Multi-branch convolutional neural network for automatic sleep stage classification with embedded stage refinement and residual attention channel fusion[J].Sensors,2020,20(22):6592. [10]ABDOLLAHPOUR M,REZAII T Y,FARZAMNIA A,et al.Transfer learning convolutional neural network for sleep stage classification using two-stage data fusion framework[J].IEEE Access,2020,8:180618-180632. [11]JIA Z,CAI X,ZHENG G,et al.SleepPrintNet:A multivariate multimodal neural network based on physiological time-series for automatic sleep staging[J].IEEE Transactions on Artificial Intelligence,2020,1(3):248-257. [12]ZHAO C,LI J,GUO Y,et al.SleepContextNet:A temporal context network for automatic sleep staging based single-channel EEG[J].Computer Methods and Programs in Biomedicine,2022,220:106806. [13]HUANG G,MA F.TrustSleepNet:A trustable deep multimodal network for sleep stage classifycation[C]//2022 IEEE-EMBS International Conference on Biomedical and Health Informatics(BHI).IEEE,2022:1-4. [14]SAJAD M,FATEMEH A,RAJENDRA U A.SleepEEGNet:Automated sleep stage scoring with sequence to sequence deep learning approach[J].PloS One,2019,14(5):e0216456. [15]LIN T Y,GOYAL P,GIRSHICK R,et al.Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision.2017:2980-2988. [16]GOLDBERGER A L,AMARAL L A N,GLASS L,et al.Phy-sioBank,physiotoolkit,and physionet:components of a new research resource for complex physiologic signals[J].Circulation,2000,101(23):e215-e220. [17]KEMP B,ZWINDERMAN A H,TUK B,et al.Analysis of a sleep-dependent neuronal feedback loop:the slow-wave microcontinuity of the EEG[J].IEEE Transactions on Biomedical Engineering,2000,47(9):1185-1194. [18]DUAN L,LI M,WANG C,et al.A novel sleep staging network based on data adaptation and multimodal fusion[J].Frontiers in Human Neuroscience,2021,15:727139. [19]YILDIRIM O,BALOGLU U B,ACHARYA U R.A DeepLearning Model for Automated Sleep Stages Classification Using PSG Signals[J].International Journal of Environmental Research and Public Health,2019,16(4):599. [20]FENG L X,LI X,WANG H Y,et al.Automatic sleep staging algorithm based on time attention mechanism[J].Frontiers in Human Neuroscience,2021,15:692054. [21]JOE M J,PYO S C.Classification of Sleep Stage with Biosignal Images Using Convolutional Neural Networks[J].Applied Sciences,2022,12(6):3028. [22]LI M,CHEN H,LIU Y,et al.4s-SleepGCN:Four-Stream GraphConvolutional Networks for Sleep Stage Classification[J].IEEE Access,2023,6(17):70612-70634. |
[1] | ZHU Fukun, TENG Zhen, SHAO Wenze, GE Qi, SUN Yubao. Semantic-guided Neural Network Critical Data Routing Path [J]. Computer Science, 2024, 51(9): 155-161. |
[2] | HAN Bing, DENG Lixiang, ZHENG Yi, REN Shuang. Survey of 3D Point Clouds Upsampling Methods [J]. Computer Science, 2024, 51(7): 167-196. |
[3] | XU Xiaohua, ZHOU Zhangbing, HU Zhongxu, LIN Shixun, YU Zhenjie. Lightweight Deep Neural Network Models for Edge Intelligence:A Survey [J]. Computer Science, 2024, 51(7): 257-271. |
[4] | ZHU Jin, TAO Chuanqi, GUO Hongjing. Test Input Prioritization Approach Based on DNN Model Output Differences [J]. Computer Science, 2024, 51(6A): 230600121-8. |
[5] | LI Wenting, XIAO Rong, YANG Xiao. Improving Transferability of Adversarial Samples Through Laplacian Smoothing Gradient [J]. Computer Science, 2024, 51(6A): 230800025-6. |
[6] | ZHANG Mingze, LI Yi, WU Wenyuan, SHI Mingquan, WANG Zhengjiang. FCTNet:Bus Arrival Time Prediction Method Based on Dual Domain Deep Learning [J]. Computer Science, 2024, 51(11A): 231000180-7. |
[7] | LUO Ruiqi, YAN Jinlin, HU Xinrong, DING Lei. EEG Emotion Recognition Based on Multiple Directed Weighted Graph and ConvolutionalNeural Network [J]. Computer Science, 2023, 50(6A): 220600128-8. |
[8] | BAI Zhixu, WANG Hengjun, GUO Kexiang. Adversarial Examples Generation Method Based on Image Color Random Transformation [J]. Computer Science, 2023, 50(4): 88-95. |
[9] | YIN Haitao, WANG Tianyou. Image Denoising Algorithm Based on Deep Multi-scale Convolution Sparse Coding [J]. Computer Science, 2023, 50(4): 133-140. |
[10] | RAO Dan, SHI Hongwei. Study on Air Traffic Flow Recognition and Anomaly Detection Based on Deep Clustering [J]. Computer Science, 2023, 50(3): 121-128. |
[11] | WANG Xiangwei, HAN Rui, Chi Harold LIU. Hierarchical Memory Pool Based Edge Semi-supervised Continual Learning Method [J]. Computer Science, 2023, 50(2): 23-31. |
[12] | REN Shuyao, SONG Jiangling, ZHANG Rui. Early Screening Method for Depression Based on EEG Signal [J]. Computer Science, 2023, 50(11A): 221100139-6. |
[13] | DONG Hongbin, HAN Shuang, FU Qiang. Geo-sensory Time Series Prediction Based on Joint Model of Auto Regression and Deep NeuralNetwork [J]. Computer Science, 2023, 50(11): 41-48. |
[14] | WEI Hui, CHEN Ze-mao, ZHANG Li-qiang. Anomaly Detection Framework of System Call Trace Based on Sequence and Frequency Patterns [J]. Computer Science, 2022, 49(6): 350-355. |
[15] | JIAO Xiang, WEI Xiang-lin, XUE Yu, WANG Chao, DUAN Qiang. Automatic Modulation Recognition Based on Deep Learning [J]. Computer Science, 2022, 49(5): 266-278. |
|