Computer Science ›› 2024, Vol. 51 ›› Issue (11A): 231200185-5.doi: 10.11896/jsjkx.231200185
• Image Processing & Multimedia Technology • Previous Articles Next Articles
ZHU Xudong, LAI Teng
CLC Number:
[1]JOHNSON J,KRISHNA R,STARK M,et al.Image retrievalusing scene graphs[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2015:3668-3678. [2]WANG S,WANG R,YAO Z,et al.Cross- modal scene graphmatching for relationship-aware image-text retrieval[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.2020:1508-1517. [3]GHOSH S,BURACHAS G,RAY A,et al.Generating natural language explanations for visual question answering using scene graphs and visual attention[J].arXiv:1902.05715,2019. [4]DAMODARAN V,CHAKRAVARTHY S,KUMAR A,et al.Understanding the role of scene graphs in visual question answering[J].arXiv:2101.05479,2021. [5]ADITYA S,YANG Y,BARAL C,et al.Image understandingusing vision and reasoning through scene description graph[J].Computer Vision and Image Understanding,2018,173:33-45. [6]ZHANG J,KALANTIDIS Y,ROHRBACH M,et al.Large-scale visual relationship understanding [C]//Proceedings of the AAAI Conference on Artificial Intelligence.2019:9185-9194. [7]RENS,HE K,GIRSHICK R,et al.Faster R-CNN:Towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analaysis and Machine Intelligence,2016,39(6):1137-1149. [8]YANG J,LU J,LEE S,et al.Visual curiosity:Learning to ask questions to learn visual recognition[J].arXiv:1810.00912,2018. [9]JERBI A,HERZIG R,BERANT J,et al.Learning object detection from captions via textual scene attributes[J].arXiv:2009.14558,2020. [10]YE K,ZHANG M,KOVASHKA A,et al.Cap2det:Learning to amplify weak caption supervision for object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:9686-9695. [11]ZAREIAN A,ROSA K D,HU D H,et al.Open-vocabulary object detection using captions[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:14393-14402. [12]LU C,KRISHNA R,BERNSTEIN M,et al.Visual relationship detection with language priors[C]//Computer Vision-ECCV 2016:14th European Conference,Amsterdam,The Netherlands,Part I 14.Springer International Publishing,2016:852-869. [13]YANG J,LU J,LEE S,et al.Graph R-CNN for scene graph generation[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:670-685. [14]CHEN T,KORNBLITH S,NOROUZI M,et al.A simpleframework for contrastive learning of visual representations[C]//International Conference on Machine Learning.PMLR,2020:1597-1607. [15]HE K,FAN H,WU Y,et al.Momentum contrast for unsupervised visual representation learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:9729-9738. [16]GRILL J B,STRUB F,ALTCHé F,et al.Bootstrap your own latent-a new approach to self-supervised learning[J].Advances in Neural Information Processing Systems,2020,33:21271-21284. [17]RADFORD A,KIM J W,HALLACY C,et al.Learning transferable visual models from natural language supervision[C]//International Conference on Machine Learning.PMLR,2021:8748-8763. [18]SCHUSTER S,KRISHNA R,CHANG A,et al.Generating semantically precise scene graphs from textual descriptions for improved image retrieval[C]//Proceedings of the Fourth Workshop on Vision and Language.2015:70-80. [19]WU H,MAO J,ZHANG Y,et al.Unified visual-semantic em-beddings:Bridging vision and language with structured meaning representations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:6609-6618. [20]CHEN Y C,LI L,YU L,et al.Uniter:Universal image-text representation learning[C]//European Conference on Computer Vision.Cham:Springer International Publishing,2020:104-120. [21]KRISHNA R,ZHU Y,GROTH O,et al.Visual genome:Con-necting language and vision using crowdsourced dense image annotations[J].International Journal of Computer Vision,2017,123:32-73. [22]XU D,ZHU Y,CHOY C B,et al.Scene graph generation by iterative message passing[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:5410-5419. [23]ZELLERS R,YATSKAR M,THOMSON S,et al.Neural motifs:Scene graph parsing with global context[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:5831-5840. [24]WANG W,WANG R,SHAN S,et al.Sketching image gist:Human-mimetic hierarchical scene graph generation[C]//European conference on computer vision.Cham:Springer International Publishing,2020:222-239. [25]TANG K,NIU Y,HUANG J,et al.Unbiased scene graph generation from biased training[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:3716-3725. [26]ZAREIAN A,KARAMAN S,CHANG S F.Weakly supervised visual semantic parsing[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:3736-3745. [27]SHI J,ZHONG Y,XU N,et al.A simple baseline for weakly-su-pervised scene graph generation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:16393-16402. [28]YE K,KOVASHKA A.Linguistic structures as weak supervision for visual scene graph generation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:8289-8299. [29]ZHONG Y,SHI J,YANG J,et al.Learning to generate scene graph from natural language supervision[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:1823-1834. [30]OORD A,LI Y,VINYALS O.Representation learning with contrastive predictive coding[J].arXiv:1807.03748,2018. [31]CHEN X,XIES,HE K.An empirical study of training self-supervised vision transformers[C]//CVF International Conference on Computer Vision(ICCV).2021:9620-9629. [32]TANG K,ZHANG H,WU B,et al.Learning to compose dynamic tree structures for visual contexts[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:6619-6628. [33]SUHAIL M,MITTAL A,SIDDIQUIE B,et al.Energy-basedlearning for scene graph generation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:13936-13945. [34]KHANDELWAL S,SUHAIL M,SIGAL L.Segmentation-grounded scene graph generation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:15879-15889. |
[1] | WANG Jiahui, PENG Guangling, DUAN Liang, YUAN Guowu, YUE Kun. Few-shot Shadow Removal Method for Text Recognition [J]. Computer Science, 2024, 51(9): 147-154. |
[2] | LI Yunchen, ZHANG Rui, WANG Jiabao, LI Yang, WANG Ziqi, CHEN Yao. Re-parameterization Enhanced Dual-modal Realtime Object Detection Model [J]. Computer Science, 2024, 51(9): 162-172. |
[3] | ZHANG Tianzhi, ZHOU Gang, LIU Hongbo, LIU Shuo, CHEN Jing. Text-Image Gated Fusion Mechanism for Multimodal Aspect-based Sentiment Analysis [J]. Computer Science, 2024, 51(9): 242-249. |
[4] | MO Shuyuan, MENG Zuqiang. Multimodal Sentiment Analysis Model Based on Visual Semantics and Prompt Learning [J]. Computer Science, 2024, 51(9): 250-257. |
[5] | LIU Qian, BAI Zhihao, CHENG Chunling, GUI Yaocheng. Image-Text Sentiment Classification Model Based on Multi-scale Cross-modal Feature Fusion [J]. Computer Science, 2024, 51(9): 258-264. |
[6] | LU Xulin, LI Zhihua. IoT Device Recognition Method Combining Multimodal IoT Device Fingerprint and Ensemble Learning [J]. Computer Science, 2024, 51(9): 371-382. |
[7] | TIAN Sicheng, HUANG Shaobin, WANG Rui, LI Rongsheng, DU Zhijuan. Contrastive Learning-based Prompt Generation Method for Large-scale Language Model ReverseDictionary Task [J]. Computer Science, 2024, 51(8): 256-262. |
[8] | WEI Xiangxiang, MENG Zhaohui. Hohai Graphic Protein Data Bank and Prediction Model [J]. Computer Science, 2024, 51(8): 117-123. |
[9] | PU Bin, LIANG Zhengyou, SUN Yu. Monocular 3D Object Detection Based on Height-Depth Constraint and Edge Fusion [J]. Computer Science, 2024, 51(8): 192-199. |
[10] | WANG Chao, TANG Chao, WANG Wenjian, ZHANG Jing. Infrared Human Action Recognition Method Based on Multimodal Attention Network [J]. Computer Science, 2024, 51(8): 232-241. |
[11] | YAN Qiuyan, SUN Hao, SI Yuqing, YUAN Guan. Multimodality and Forgetting Mechanisms Model for Knowledge Tracing [J]. Computer Science, 2024, 51(7): 133-139. |
[12] | HU Haibo, YANG Dan, NIE Tiezheng, KOU Yue. Graph Contrastive Learning Incorporating Multi-influence and Preference for Social Recommendation [J]. Computer Science, 2024, 51(7): 146-155. |
[13] | LOU Zhengzheng, ZHANG Xin, HU Shizhe, WU Yunpeng. Foggy Weather Object Detection Method Based on YOLOX_s [J]. Computer Science, 2024, 51(7): 206-213. |
[14] | TIAN Qing, LU Zhanghu, YANG Hong. Unsupervised Domain Adaptation Based on Entropy Filtering and Class Centroid Optimization [J]. Computer Science, 2024, 51(7): 345-353. |
[15] | WANG Yingjie, ZHANG Chengye, BAI Fengbo, WANG Zumin. Named Entity Recognition Approach of Judicial Documents Based on Transformer [J]. Computer Science, 2024, 51(6A): 230500164-9. |
|