Computer Science ›› 2024, Vol. 51 ›› Issue (11A): 240100105-7.doi: 10.11896/jsjkx.240100105
• Network & Communication • Previous Articles Next Articles
GAN Liangqi, DONG Chao
CLC Number:
[1]军工行业专题报告之无人装备深度研究[EB/OL].2020-10-18[2024-01-09].https://finance.sina.com.cn/stock/stockzmt/2020-10-18/doc-iiznezxr6684066.shtml [2]中国军网.无人智能作战有哪些优势[EB/OL].2023-01-12[2024-01-09].http://www.81.cn/jfjbmap/content/2023-01/12/content_331710.htm [3]杨飞.无人机在高原森林灭火中的应用[J].今日消防,2023,8(6):20-23. [4]GUPTAL,JAINR,VASZKUNG.Survey of Important Issues in UAV Communication Networks[J].IEEE Communications Surveys and Tutorials,2016,18(2):1123-1152. [5]KINGSTOND,BEARDR,HOLTR.Decentralized Perimeter Surv-eillance Using a Team of UAVs[J].IEEE Transactions on Robotics,2008,24(6):1394-1404. [6]KAI L,VOICURC,KANHERE SS,et al.Energy efficient legitimate wireless surveillance of UAV communications[J].IEEE Transactions on Vehicular Technology,2019,68(3):2283-2293. [7]WU Q Q,ZENG Y,ZHANG R.Joint Trajectory and Communication Design for Multi-UAV Enabled Wireless Networks[J].IEEE Transactions on Wireless Communications,2018,17(3):2109-2121. [8]CHEN J X,XU Y H,WU Q H,et al.Interference-aware Online Distributed Channel Selection for Multicluster FANET:a Potential Game Approach[J].IEEE Transactions on Vehicular Technology,2019,68(4):3792-3804. [9]ALENAO,NIELSA,JAMESC,et al.Optimization approachesfor civil applications of unmanned aerial vehicles (UAVs) or aerial drones:A survey[J].Networks,2018,72(4):411-458. [10]GAN L Q.Research on Design and Control Method of Un-manned Aerial Vehicle with Manipulator[D].Guilin:Guilin University of Electronic Technology,2020. [11]ZONG Q,WANG D D,SHAO S K,et al.Research status and development of multi UAV coordinated formation flight control[J].Journal of Harbin Institute Of Technology,2017,49(3):1-14. [12]WANG D D.Research on Distributed Formation Keeping andReconfiguration Control for Multiple Unmanned Aerial Vehicles[D].Tianjin:Tianjin University,2019. [13]REN G S,CHANG J,CHEN W S.Present and Prospect of Intelligent Autonomous Control for UAV[J].Control and Intormation Technology,2018,456(6):13-19. [14]MENG L H,XU X H,ZHAO Y F.Cooperative coalition for formation flight scheduling based on incomplete information[J].Chinese Journal of Aeronautics,2015,28(6):1747-1757. [15]LIU Z,GAO X G,FU X W.Coalition Formation for MultipleUAVs Cooperative Search and Attack with Communication Constraints in Unknown Environment[J].Transactions of Nanjing University of Aeronautics and Astronautics,2017(6):688-699. [16]LI W,CHEN J.Review and Prospect of Cooperative Combat of Manned/Unmanned Aerial Vehicle Hybrid Formation[J].Aerospace Control,2017,35(3):90-96. [17]REYNOLDS C W.Flocks,herds and schools:A distributed behavioral model[J].ACM SIGGRAPH Computer Graphics,1987,21(4):25. [18]QIU H X,DUAN H B.From collective flight in bird flocks to unmanned aerial vehicle autonomous swarm formation[J].Chinese Journal of Engineering,2017,39(3):317-322. [19]河北新闻网.河北涿州:无人机架起“空中基站”[EB/OL].2023[2024-01-09].https://hebei.hebnews.cn/2023-08/04/content_9050000.htm. |
[1] | WANG Xianwei, FENG Xiang, YU Huiqun. Multi-agent Cooperative Algorithm for Obstacle Clearance Based on Deep Deterministic PolicyGradient and Attention Critic [J]. Computer Science, 2024, 51(7): 319-326. |
[2] | GAO Yuzhao, NIE Yiming. Survey of Multi-agent Deep Reinforcement Learning Based on Value Function Factorization [J]. Computer Science, 2024, 51(6A): 230300170-9. |
[3] | HUANG Feihu, LI Peidong, PENG Jian, DONG Shilei, ZHAO Honglei, SONG Weiping, LI Qiang. Multi-agent Based Bidding Strategy Model Considering Wind Power [J]. Computer Science, 2024, 51(6A): 230600179-8. |
[4] | XIN Yuanxia, HUA Daoyang, ZHANG Li. Multi-agent Reinforcement Learning Algorithm Based on AI Planning [J]. Computer Science, 2024, 51(5): 179-192. |
[5] | XIE Guangqiang, ZHONG Biwei, LI Yang. Distributed Adaptive Multi-agent Rendezvous Control Based on Average Consensus Protocol [J]. Computer Science, 2024, 51(5): 242-249. |
[6] | SHI Dianxi, HU Haomeng, SONG Linna, YANG Huanhuan, OUYANG Qianying, TAN Jiefu , CHEN Ying. Multi-agent Reinforcement Learning Method Based on Observation Reconstruction [J]. Computer Science, 2024, 51(4): 280-290. |
[7] | SHI Dianxi, PENG Yingxuan, YANG Huanhuan, OUYANG Qianying, ZHANG Yuhui, HAO Feng. DQN-based Multi-agent Motion Planning Method with Deep Reinforcement Learning [J]. Computer Science, 2024, 51(2): 268-277. |
[8] | LUO Ruiqing, ZENG Kun, ZHANG Xinjing. Curriculum Learning Framework Based on Reinforcement Learning in Sparse HeterogeneousMulti-agent Environments [J]. Computer Science, 2024, 51(1): 301-309. |
[9] | XIONG Liqin, CAO Lei, CHEN Xiliang, LAI Jun. Value Factorization Method Based on State Estimation [J]. Computer Science, 2023, 50(8): 202-208. |
[10] | LIN Xiangyang, XING Qinghua, XING Huaixi. Study on Intelligent Decision Making of Aerial Interception Combat of UAV Group Based onMADDPG [J]. Computer Science, 2023, 50(6A): 220700031-7. |
[11] | WANG Zihan, TONG Xiangrong. Research Progress of Multi-agent Path Finding Based on Conflict-based Search Algorithms [J]. Computer Science, 2023, 50(6): 358-368. |
[12] | YU Ze, NING Nianwen, ZHENG Yanliu, LYU Yining, LIU Fuqiang, ZHOU Yi. Review of Intelligent Traffic Signal Control Strategies Driven by Deep Reinforcement Learning [J]. Computer Science, 2023, 50(4): 159-171. |
[13] | Cui ZHANG, En WANG, Funing YANG, Yong jian YANG , Nan JIANG. UAV Frequency-based Crowdsensing Using Grouping Multi-agentDeep Reinforcement Learning [J]. Computer Science, 2023, 50(2): 57-68. |
[14] | YAO Hongliang, YIN Zhiyuan, YANG Jing, YU Kui. Stock Market Trend Reasoning Algorithm Based on Game Dynamic Influence Diagram [J]. Computer Science, 2023, 50(11A): 221100039-7. |
[15] | PENG Yingxuan, SHI Dianxi, YANG Huanhuan, HU Haomeng, YANG Shaowu. Intention-based Multi-agent Motion Planning Method with Deep Reinforcement Learning [J]. Computer Science, 2023, 50(10): 156-164. |
|