Computer Science ›› 2025, Vol. 52 ›› Issue (11): 150-156.doi: 10.11896/jsjkx.240800026
• Computer Graphics & Multimedia • Previous Articles Next Articles
DU Xiuli, ZHU Jinyao, GAO Xing, LYU Yana, QIU Shaoming
CLC Number:
| [1]DONOHO D L.Compressed sensing [J].IEEE Transation on Information Theory,2006,52(4):1289-1306. [2]CANDÈS E J,TAO T.Near-optimal signal recovery from random projections:Universal encoding strategies? [J].IEEE Transaction on Information Theory,2006,52(12):5406-5425. [3]CANDES E J,WAKIN M B. An introduction to compressive sampling [J].IEEE Signal Processing Magazine,2008,25(2):21-30. [4]SHI W,JIANG F,ZHANG S,et al.Deep networks for compressed image sensing[C]//2017 IEEE International Conference on Multimedia and Expo(ICME).IEEE,2017:877-882. [5]VEERARAGHAVAN A,REDDY D,RASKAR R.Coded Strobing Photography:Compressive Sensing of High Speed Periodic Videos [J].IEEE Transaction on Pattern Analysis and Machine Intelligence,2011,33(4):671-686. [6]DO T T,CHEN Y,NGUYEN D T,et al.Distributed Com-pressed Video Sensing [C]//2009 16th IEEE International Conference on Image Processing(ICIP).IEEE,2009:1393-1396. [7]OU Y F,LIU T,ZHAO Z,et al.Modeling the impact of frame rate on perceptual quality of video [C]//Proceedings of the IEEE Conference on Image Processing.2008:689-692. [8]VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[C]//Proceedings of the 31st International Confe-rence on Neural Information Processing Systems.2017:6000-6010. [9]DOSOVITSKIY A,BEYER L,KOLESNIKOV A,et al.Animage is worth 16×16 words:Transformers for image recognition at scale[J].arXiv:2010.11929,2020. [10]YE D J,NI Z K,WANG H L,et al.CSformer:Bridging convolution and Transformer for Compressive Sensing[J].IEEE Transactions on Image Processing,2023,32:2827-2842. [11]SHEN M H,GAN H P,MA C Y,et al.MTC-CSNet:Marrying transformer and convolution for image compressed sensing[J].IEEE Transactions on Cybernetics,2024,54(9):4949-4961. [12]YANG Z Y,PAN J J,DAI J,et al.Self-supervised lightweight depth estimation in endoscopy combining CNN and Transformer[J].IEEE Transactions on Medical Imaging,2024,43(5):1934-1944. [13]LIU J L,GONG M G,GAO Y,et al.Bidirectional interaction of CNN and Transformer for image inpainting[J].Knowledge-Based Systems.2024,299:112046. [14]DUAN Z,LUO X,ZHANG T.Combining transformers withCNN for multi-focus image fusion[J].Expert Systems with Applications,2023,235:12115. [15]XU K,REN F.CSVideoNet:A real-time end-to-end learningframework for high-frame-rate video compressive sensing [C]//Proceedings of the IEEE Conference on Computer Vision Pattern Recognition.2018. [16]ZHAO Z,XIE X,LIU W,et al.A hybrid-3d convolutional network for video compressive sensing [J].IEEE Access,2020,8:20503-20513. [17]CHEN C,ZHOU C,ZHANG D Y.Adaptive Reconstruction for Distributed Compressive Video Sensing Based on Text features.[J].Chinese Journal of Sensors and Actuators,2024,37(1):58-63. [18]SHI W,LIU S,JIANG F,et al.Video compressed sensing using a convolutional neural network [J].IEEE Transactions on Circuits System and Video Technology,2021,31(2):425-438. [19]YANG J,WANG H X,FAN Y B,et al.VCSL:Video compressive sensing with low-complexity ROI detection in compressed domain [C]//Proceedings of the IEEE Conference on Data Compression.2023. [20]YANG J,WANG H X,TANGUCHI I,et al.AVCSR:Adaptive video compressive sensing using region-of-interest detection in the compressed domain [J].IEEE Multimedia,2023,31(1):19-32. [21]ZHAO C,MA S,ZHANG J,et al.Video compressive sensing reconstruction via reweighted residual sparsity[J].IEEE Transactions on Circuits and Systems for Video Technology,2017,27(6):1182-1195. [22]ZHONG Y H,ZHANG C X,YANG X,et al.Video compressed sensing reconstruction via an untrained network with low-rank regularization [J].IEEE Transaction on Multimedia,2023,26:4590-460. [23]TRAMEL E M,FOWLER J E.Video compressed sensing with multihypothesis [C]//Proceedings of the IEEE Conference on Data Compression.2011:193-202. [24]DU X L,HU X,CHENG B,et al.Multi-hypothesis Reconstruction Algorithm of DCVS Based on Weighted Non-local Similarity [J].Computer Science,2019,46(1):291-296. [25]SUN R H,LIU H,DENG K L,et al.Window-adaptive Reconstruction for Low-delay Video Compressive Sensing [J].Chinese Journal of Beijing University of Aeronautics and Astronautics,2025,51(7):2374-2383. [26]YING X Y,WANG L G,WANG Y Q,et al.Deformable 3D convolution for Video Super-Resolution [J].IEEE Signal Proces-sing Letters,2020,27:1500-1504. [27]PAN Z M,TAN Y L,ZHENG H,et al.Block-based Compressed Sensing of Image Reconstruction Based on Deep Neural Network[J].Computer Scienc,2022,49(S2):510-518. [28]SOOMRO K,ZAMIR A R,SHAH M.UCF101:A Dataset of101 Human Actions Classes From Videos in The Wild [J].ar-Xiv:2012,1212,0402. [29]KINGMA D P,BA J.Adam:A method for stochastic optimization [C]//Proceedings of the IEEE Conference on International Conference on Learning Representations.2015. |
| [1] | DENG Jiayan, TIAN Shirui, LIU Xiangli, OUYANG Hongwei, JIAO Yunjia, DUAN Mingxing. Trajectory Prediction Method Based on Multi-stage Pedestrian Feature Mining [J]. Computer Science, 2025, 52(9): 241-248. |
| [2] | HU Hailong, XU Xiangwei, LI Yaqian. Drug Combination Recommendation Model Based on Dynamic Disease Modeling [J]. Computer Science, 2025, 52(9): 96-105. |
| [3] | DING Zhengze, NIE Rencan, LI Jintao, SU Huaping, XU Hang. MTFuse:An Infrared and Visible Image Fusion Network Based on Mamba and Transformer [J]. Computer Science, 2025, 52(8): 188-194. |
| [4] | LIU Huayong, XU Minghui. Hash Image Retrieval Based on Mixed Attention and Polarization Asymmetric Loss [J]. Computer Science, 2025, 52(8): 204-213. |
| [5] | WANG Fengling, WEI Aimin, PANG Xiongwen, LI Zhi, XIE Jingming. Video Super-resolution Model Based on Implicit Alignment [J]. Computer Science, 2025, 52(8): 232-239. |
| [6] | LIU Yajun, JI Qingge. Pedestrian Trajectory Prediction Based on Motion Patterns and Time-Frequency Domain Fusion [J]. Computer Science, 2025, 52(7): 92-102. |
| [7] | HUANG Xingyu, WANG Lihui, TANG Kun, CHENG Xinyu, ZHANG Jian, YE Chen. EFormer:Efficient Transformer for Medical Image Registration Based on Frequency Division and Board Attention [J]. Computer Science, 2025, 52(7): 151-160. |
| [8] | WANG Youkang, CHENG Chunling. Multimodal Sentiment Analysis Model Based on Cross-modal Unidirectional Weighting [J]. Computer Science, 2025, 52(7): 226-232. |
| [9] | LONG Xiao, HUANG Wei, HU Kai. Bi-MI ViT:Bi-directional Multi-level Interaction Vision Transformer for Lung CT ImageClassification [J]. Computer Science, 2025, 52(6A): 240700183-6. |
| [10] | CHEN Xianglong, LI Haijun. LST-ARBunet:An Improved Deep Learning Algorithm for Nodule Segmentation in Lung CT Images [J]. Computer Science, 2025, 52(6A): 240600020-10. |
| [11] | WANG Xuejian, WANG Yiheng, SUN Xinpo, LIU Chuan, JIA Ming, ZHAO Chao, YANG Chao. Extraction of Crustal Deformation Anomalies Based on Transformer-Isolation Forest [J]. Computer Science, 2025, 52(6A): 240600155-6. |
| [12] | PIAO Mingjie, ZHANG Dongdong, LU Hu, LI Rupeng, GE Xiaoli. Study on Multi-agent Supply Chain Inventory Management Method Based on Improved Transformer [J]. Computer Science, 2025, 52(6A): 240500054-10. |
| [13] | LI Yang, LIU Yi, LI Hao, ZHANG Gang, XU Mingfeng, HAO Chongqing. Human Pose Estimation Using Millimeter Wave Radar Based on Transformer and PointNet++ [J]. Computer Science, 2025, 52(6A): 240400169-9. |
| [14] | CHEN Jiajun, LIU Bo, LIN Weiwei, ZHENG Jianwen, XIE Jiachen. Survey of Transformer-based Time Series Forecasting Methods [J]. Computer Science, 2025, 52(6): 96-105. |
| [15] | WANG Teng, XIAN Yunting, XU Hao, XIE Songqi, ZOU Quanyi. Ship License Plate Recognition Network Based on Pyramid Transformer in Transformer [J]. Computer Science, 2025, 52(6): 179-186. |
|
||