Computer Science ›› 2025, Vol. 52 ›› Issue (11): 425-433.doi: 10.11896/jsjkx.240900007
• Information Security • Previous Articles Next Articles
GUO Jiaming1, DU Wentao1, YANG Chao2,3
CLC Number:
| [1]BROWN A,HUH J,CHUNG J S,et al.VoxSRC 2021:The Third VoxCeleb Speaker Recognition Challenge[J].arXiv:2201.04583,2022. [2]QIU X P,SUN T X,XU Y G,et al.Pre-trained models for natural language processing:A survey[J].Science China(Technological Sciences),2020,63(10):1872-1897. [3]BISONG E.Building Machine Learning and Deep Learning Models on Google Cloud Platform:A Comprehensive Guide for Beginners[M].Berkely:Apress,2019. [4]YAN B,LAN J,YAN Z.Backdoor attacks against voice recognition systems:A survey[J].arXiv:2307.13643,2023. [5]LI Y,JIANG Y,LI Z,et al.Backdoor learning:A survey[J].IEEE Transactions on Neural Networks and Learning Systems,2022,35(1):5-22. [6]GAO Y,DOAN B G,ZHANG Z,et al.Backdoor attacks and countermeasures on deep learning:A comprehensive review[J].arXiv:2007.10760,2020. [7]JAVAHERIPI M,SAMRAGH M,FIELDS G,et al.Cleann:Accelerated trojan shield for embedded neural networks[C]//Proceedings of the 39th International Conference on Computer-Aided Design.2020:1-9. [8]TIAN Z,CUI L,LIANG J,et al.A comprehensive survey on poisoning attacks and countermeasures in machine learning[J].ACM Computing Surveys,2022,55(8):1-35. [9]GU T,LIU K,DOLAN-GAVITT B,et al.Evaluating Backdooring Attacks on Deep Neural Networks[J].IEEE Access,2019,7:47230-47244. [10]WANG B,YAO Y,SHAN S,et al.Neural cleanse:Identifying and mitigating backdoor attacks in neural networks[C]//2019 IEEE Symposium on Security and Privacy(SP).IEEE,2019:707-723. [11]DONG Y,YANG X,DENG Z,et al.Black-box detection ofbackdoor attacks with limited information and data[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:16482-16491. [12]CHOU E,TRAMER F,PELLEGRINO G.Sentinet:Detectinglocalized universal attacks against deep learning systems[C]//2020 IEEE Security and Privacy Workshops(SPW).IEEE,2020:48-54. [13]GUO J,LI Y,CHEN X,et al.Scale-up:An efficient black-box input-level backdoor detection via analyzing scaled prediction consistency[J].arXiv:2302.03251,2023. [14]HOU L,FENG R,HUA Z,et al.IBD-PSC:Input-level Backdoor Detection via Parameter-oriented Scaling Consistency[J].arXiv:2405.09786,2024. [15]LEVINE A,FEIZI S.Deep partition aggregation:Provable de-fense against general poisoning attacks[J].arXiv:2006.14768,2020. [16]KRIZHEVSKY A.Learning multiple layers of features from tiny images[J/OL].http://www.cs.toronto.edu/~kriz/lear-ning-features-2009-TR.pdf. [17]SAADNA Y,BEHLOUL A.An overview of traffic sign detection and classification methods[J].International Journal of Multimedia Information Retrieval,2017,6:193-210. [18]CHEN X,LIU C,LI B,et al.Targeted backdoor attacks on deep learning systems using data poisoning[J].arXiv:1712.05526,2017. [19]LI Y,ZHAI T,JIANG Y,et al.Backdoor attack in the physical world[J].arXiv:2104.02361,2021. [20]NGUYEN A,TRAN A.Wanet-imperceptible warping-basedbackdoor attack[J].arXiv:2102.10369,2021. [21]DOAN K,LAO Y,ZHAO W,et al.Lira:Learnable,imperceptible and robust backdoor attacks[C]//Proceedings of the IEEE/CVF international conference on computer vision.2021:11966-11976. [22]SOURI H,FOWL L,CHELLAPPA R,et al.Sleeper agent:Scalable hidden trigger backdoors for neural networks trained from scratch[J].Advances in Neural Information Processing Systems,2022,35:19165-19178. [23]TRAN B,LI J,MADRY A.Spectral Signatures in Backdoor Attacks[J].arXiv:1811.00636,2018. [24]HAYASE J,KONG W.SPECTRE:Defending against backdoor attacks using robust covariance estimation[C]//International Conference on Machine Learning.2021:4129-4139. [25]ZENG Y,PARK W,MAO Z M,et al.Rethinking the backdoorattacks' triggers:A frequency perspective[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:16473-16481. [26]HUANG H,MA X,ERFANI S,et al.Distilling cognitive backdoor patterns within an image[J].arXiv:2301.10908,2023. [27]AMARNATH C,BALWANI A H,MA K,et al.Tesda:Transform enabled statistical detection of attacks in deep neural networks[J].arXiv:2110.08447,2021. [28]CHEN B,CARVALHO W,BARACALDO N,et al.Detectingbackdoor attacks on deep neural networks by activation clustering[J].arXiv:1811.03728,2018. [29]LIU G,KHREISHAH A,SHARADGAH F,et al.An adaptive black-box defense against trojan attacks(trojdef)[J].IEEE Transactions on Neural Networks and Learning Systems,2022,35(4):5367-5381. [30]CHEN W,WU B,WANG H.Effective backdoor defense by exploiting sensitivity of poisoned samples[J].Advances in Neural Information Processing Systems,2022,35:9727-9737. [31]LECUN Y,JACKEL L D,BOTTOU L,et al.Learning algo-rithms for classification:A comparison on handwritten digit re-cognition[J].Neural Networks:the Statistical Mechanics Perspective,1995,261(276):2. [32]BREIMAN L.Bagging Predictors[J].Machine Learning,1996,24:123-140. |
| [1] | LIU Wei, XU Yong, FANG Juan, LI Cheng, ZHU Yujun, FANG Qun, HE Xin. Multimodal Air-writing Gesture Recognition Based on Radar-Vision Fusion [J]. Computer Science, 2025, 52(9): 259-268. |
| [2] | YIN Shi, SHI Zhenyang, WU Menglin, CAI Jinyan, YU De. Deep Learning-based Kidney Segmentation in Ultrasound Imaging:Current Trends and Challenges [J]. Computer Science, 2025, 52(9): 16-24. |
| [3] | ZENG Lili, XIA Jianan, LI Shaowen, JING Maike, ZHAO Huihui, ZHOU Xuezhong. M2T-Net:Cross-task Transfer Learning Tongue Diagnosis Method Based on Multi-source Data [J]. Computer Science, 2025, 52(9): 47-53. |
| [4] | LI Yaru, WANG Qianqian, CHE Chao, ZHU Deheng. Graph-based Compound-Protein Interaction Prediction with Drug Substructures and Protein 3D Information [J]. Computer Science, 2025, 52(9): 71-79. |
| [5] | FU Chao, YU Liangju, CHANG Wenjun. Selective Ensemble Learning Method for Optimal Similarity Based on LLaMa3 and Choquet Integrals [J]. Computer Science, 2025, 52(9): 80-87. |
| [6] | LIU Sixing, XU Shuoyang, XU He, JI Yimu. Machine Learning Based Interventional Glucose Sensor Fault Monitoring Model [J]. Computer Science, 2025, 52(9): 106-118. |
| [7] | LUO Chi, LU Lingyun, LIU Fei. Partial Differential Equation Solving Method Based on Locally Enhanced Fourier NeuralOperators [J]. Computer Science, 2025, 52(9): 144-151. |
| [8] | LIU Leyuan, CHEN Gege, WU Wei, WANG Yong, ZHOU Fan. Survey of Data Classification and Grading Studies [J]. Computer Science, 2025, 52(9): 195-211. |
| [9] | LIU Zhengyu, ZHANG Fan, QI Xiaofeng, GAO Yanzhao, SONG Yijing, FAN Wang. Review of Research on Deep Learning Compiler [J]. Computer Science, 2025, 52(8): 29-44. |
| [10] | TANG Boyuan, LI Qi. Review on Application of Spatial-Temporal Graph Neural Network in PM2.5 ConcentrationForecasting [J]. Computer Science, 2025, 52(8): 71-85. |
| [11] | ZHENG Cheng, YANG Nan. Aspect-based Sentiment Analysis Based on Syntax,Semantics and Affective Knowledge [J]. Computer Science, 2025, 52(7): 218-225. |
| [12] | FAN Xing, ZHOU Xiaohang, ZHANG Ning. Review on Methods and Applications of Short Text Similarity Measurement in Social Media Platforms [J]. Computer Science, 2025, 52(6A): 240400206-8. |
| [13] | YANG Jixiang, JIANG Huiping, WANG Sen, MA Xuan. Research Progress and Challenges in Forest Fire Risk Prediction [J]. Computer Science, 2025, 52(6A): 240400177-8. |
| [14] | WANG Jiamin, WU Wenhong, NIU Hengmao, SHI Bao, WU Nier, HAO Xu, ZHANG Chao, FU Rongsheng. Review of Concrete Defect Detection Methods Based on Deep Learning [J]. Computer Science, 2025, 52(6A): 240900137-12. |
| [15] | HAO Xu, WU Wenhong, NIU Hengmao, SHI Bao, WU Nier, WANG Jiamin, CHU Hongkun. Survey of Man-Machine Distance Detection Method in Construction Site [J]. Computer Science, 2025, 52(6A): 240700098-10. |
|
||