Computer Science ›› 2025, Vol. 52 ›› Issue (12): 367-373.doi: 10.11896/jsjkx.241100076
• Information Security • Previous Articles Next Articles
SONG Jianhua1,3,4 , CAO Kai2, ZHANG Yan2,3
CLC Number:
| [1]SIEGEL D.Understanding the DAO attack[EB/OL].https://www.coindesk.com/understanding-dao-hack-journalists. [2]BlockCAT.On the Parity multi-sig wallet attack[EB/OL].https://medium.com/blockcat/on-the-parity-multi-sig-wallet-attack-83fb5e7f4b8c. [3]PRETROV S.Another Parity wallet hack explained[EB/OL].https://medium.com/@Pr0Ger/another-parity-wallet-hack-expl-ained-847ca46a2e1c. [4]Wikipedia.Poly network exploit[EB/OL].https://en.wikipedia.org/wiki/Poly_Network_exploit. [5]QIAN P,LIU Z G,HE Q M,et al.A Survey of Security Vulnerability Detection Techniques for Smart Contracts [J].Journal of Software,2022,33(8):3059-3085. [6]HILDENBRANDT E,SAXENA M,RODRIGUES N,et al.Kevm:A complete formal semantics of the ethereum virtual machine[C]//2018 IEEE 31st Computer Security Foundations Symposium(CSF).IEEE,2018. [7]AMANI S,BÉGEL M,BORTIN M,et al.Towards verifyingethereum smart contract bytecode in Isabelle/HOL[C]//Proceedings of the 7th ACM SIGPLAN International Conference on Certified Programs and Proofs.2018:66-77. [8]LUU L,CHU D H,OLICKEL H,et al.Making smart contracts smarter[C]//Proceedings of the 2016 ACM SIGSAC Confe-rence on Computer and Communications Security.2016:254-269. [9]MUELLER B.A framework for bug hunting on the ethereum blockchain[J].ConsenSys/mythril,2017. [10]JIANG B,LIU Y,CHAN W K.Contractfuzzer:Fuzzing smart contracts for vulnerability detection[C]//Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering.2018:259-269. [11]ALBERT E,GORDILLO P,LIVSHITS B,et al.Ethir:A framework for high-level analysis of Ethereum bytecode[C]//Proceedings of International Symposium on Automated Technology for Verification and Analysis.Cham:Springer-Verlag,2018. [12]TANN W J W,HAN X J,GUPTA S S,et al.Towards safersmart contracts:A sequence learning approach to detecting security threats[J].arXiv:1811.06632,2018. [13]HU H W,XU Y D.SCSGuard:Deep SCAM detection forEthereum smart contracts[J].arXiv:2105.10426,2021. [14]GU W Y,WANG G J,LI P Q,et al.Detecting unknown vulnerabilities in smart contracts with the CNN-BiLSTM model[J].International Journal of Information Security,2025,24(1):33. [15]WANG Z F,WU W X,ZENG C Y,et al.Graph Neural Networks Enhanced Smart Contract Vulnerability Detection of Educational Blockchain[J].arXiv:2303.04477,2023. [16]ZHANG J,LU G H,YU J.A Smart Contract Vulnerability Detection Method Based on Heterogeneous Contract Semantic Graphs and Pre-Training Techniques[J].Electronics,2024,13(18):3786. [17]DUY P T,KHOA N H,QUYUE N H,et al.Vulnsense:efficient vulnerability detection in ethereum smart contracts by multimodal learning with graph neural network and language model[J].International Journal of Information Security,2025,24(1):48. [18]ROSSINI M,ZICHICHI M,FERRETTI S.Smart contracts vulnerability classification through deep learning[C]//Proceedings of the 20th ACM Conference on Embedded Networked Sensor Systems.2022:1229-1230. [19]ZHEN Z,ZHAO X,ZHANG J,et al.DA-GNN:A smart contract vulnerability detection method based on Dual Attention Graph Neural Network[J].Computer Networks,2024,242:110238. |
| [1] | LIU Wei, XU Yong, FANG Juan, LI Cheng, ZHU Yujun, FANG Qun, HE Xin. Multimodal Air-writing Gesture Recognition Based on Radar-Vision Fusion [J]. Computer Science, 2025, 52(9): 259-268. |
| [2] | ZHOU Tao, DU Yongping, XIE Runfeng, HAN Honggui. Vulnerability Detection Method Based on Deep Fusion of Multi-dimensional Features from Heterogeneous Contract Graphs [J]. Computer Science, 2025, 52(9): 368-375. |
| [3] | YIN Shi, SHI Zhenyang, WU Menglin, CAI Jinyan, YU De. Deep Learning-based Kidney Segmentation in Ultrasound Imaging:Current Trends and Challenges [J]. Computer Science, 2025, 52(9): 16-24. |
| [4] | ZENG Lili, XIA Jianan, LI Shaowen, JING Maike, ZHAO Huihui, ZHOU Xuezhong. M2T-Net:Cross-task Transfer Learning Tongue Diagnosis Method Based on Multi-source Data [J]. Computer Science, 2025, 52(9): 47-53. |
| [5] | LI Yaru, WANG Qianqian, CHE Chao, ZHU Deheng. Graph-based Compound-Protein Interaction Prediction with Drug Substructures and Protein 3D Information [J]. Computer Science, 2025, 52(9): 71-79. |
| [6] | LUO Chi, LU Lingyun, LIU Fei. Partial Differential Equation Solving Method Based on Locally Enhanced Fourier NeuralOperators [J]. Computer Science, 2025, 52(9): 144-151. |
| [7] | LIU Leyuan, CHEN Gege, WU Wei, WANG Yong, ZHOU Fan. Survey of Data Classification and Grading Studies [J]. Computer Science, 2025, 52(9): 195-211. |
| [8] | TANG Boyuan, LI Qi. Review on Application of Spatial-Temporal Graph Neural Network in PM2.5 ConcentrationForecasting [J]. Computer Science, 2025, 52(8): 71-85. |
| [9] | LIU Zhengyu, ZHANG Fan, QI Xiaofeng, GAO Yanzhao, SONG Yijing, FAN Wang. Review of Research on Deep Learning Compiler [J]. Computer Science, 2025, 52(8): 29-44. |
| [10] | ZHENG Cheng, YANG Nan. Aspect-based Sentiment Analysis Based on Syntax,Semantics and Affective Knowledge [J]. Computer Science, 2025, 52(7): 218-225. |
| [11] | FAN Xing, ZHOU Xiaohang, ZHANG Ning. Review on Methods and Applications of Short Text Similarity Measurement in Social Media Platforms [J]. Computer Science, 2025, 52(6A): 240400206-8. |
| [12] | YANG Jixiang, JIANG Huiping, WANG Sen, MA Xuan. Research Progress and Challenges in Forest Fire Risk Prediction [J]. Computer Science, 2025, 52(6A): 240400177-8. |
| [13] | WANG Jiamin, WU Wenhong, NIU Hengmao, SHI Bao, WU Nier, HAO Xu, ZHANG Chao, FU Rongsheng. Review of Concrete Defect Detection Methods Based on Deep Learning [J]. Computer Science, 2025, 52(6A): 240900137-12. |
| [14] | HAO Xu, WU Wenhong, NIU Hengmao, SHI Bao, WU Nier, WANG Jiamin, CHU Hongkun. Survey of Man-Machine Distance Detection Method in Construction Site [J]. Computer Science, 2025, 52(6A): 240700098-10. |
| [15] | ZHOU Lei, SHI Huaifeng, YANG Kai, WANG Rui, LIU Chaofan. Intelligent Prediction of Network Traffic Based on Large Language Model [J]. Computer Science, 2025, 52(6A): 241100058-7. |
|
||