Computer Science ›› 2026, Vol. 53 ›› Issue (1): 323-330.doi: 10.11896/jsjkx.241200002
• Information Security • Previous Articles Next Articles
WEN Zerui, JIANG Tian, HUANG Zijian, CUI Xiaohui
CLC Number:
| [1]LIU J H,GUANG J C,FANG H Q,et al.Efficient View Transformation for Autonomous Driving[J].Computer Systems and Applications,2025,34(2):246-253. [2]CHENG C Z.Financial Time Series Prediction Based on DeepLearning[D].Chengdu:University of Electronic Science and Technology of China,2021. [3]WANG K.Research on Medical Image Classification and Segmentation Based on Deep Learning[D].Changsha:National University of Defense Technology,2022. [4]SZEGEDY C.Intriguing properties of neural networks[J].ar-Xiv:1312.6199,2013. [5]LI Z,CHENG H,CAI X,et al.Sa-es:Subspace activation evolution strategy for black-box adversarial attacks[J].IEEE Transactions on Emerging Topics in Computational Intelligence,2022,7(3):780-790. [6]WILLIAMS P N,LI K.Black-box sparse adversarial attack via multiobjective optimisation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2023:12291-12301. [7]WANG H,ZHU C,CAO Y,et al.ADSAttack:An Adversarial Attack Algorithm via Searching Adversarial Distribution in Latent Space[J].Electronics,2023,12(4):816. [8]CROCE F,ANDRIUSHCHENKO M,SINGH N D,et al.Sparse-rs:a versatile framework for query-efficient sparse black-box adversarial attacks[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2022:6437-6445. [9]JI S H,HU L,ZHANG P C,et al.Adversarial Example Generation Method Based on Sparse Perturbation[J].Journal of Software,2023,34(9):4003-4017. [10]ZHOU B,KHOSLA A,LAPEDRIZA A,et al.Learning deepfeatures for discriminative localization[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:2921-2929. [11]PAPERNOT N,MCDANIEL P,JHA S,et al.The limitations of deep learning in adversarial settings[C]//2016 IEEE European Symposium on Security and Privacy(EuroS&P).IEEE,2016:372-387. [12]SU J,VARGAS D V,SAKURAI K.One pixel attack for fooling deep neural networks[J].IEEE Transactions on Evolutionary Computation,2019,23(5):828-841. [13]MODAS A,MOOSAVI-DEZFOOLI S M,FROSSARD P.Sparsefool:a few pixels make a big difference[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:9087-9096. [14]WU W,SU Y,CHEN X,et al.Boosting the transferability of adversarial samples via attention[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:1161-1170. [15]HE K,ZHANG X,REN S,et al.Deep residual learning forimage recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [16]SELVARAJU R R,COGSWELL M,DAS A,et al.Grad-cam:Visual explanations from deep networks via gradient-based localization[C]//Proceedings of the IEEE International Confe-rence on Computer Vision.2017:618-626. [17]LI W T,XIAO R,YANG X.Improving Transferability of Adversarial Samples Through Laplacian Smoothing Gradient[J].Computer Science,2024,51(S1):938-943. [18]CHEN J Y,CHEN Y Q,ZHENG H B,et al.Black-box Adversarial Attack Against Road Sign Recognition Model via PSO[J].Journal of Software, 2020,31(9):2785-2801. [19]DONG X,CHEN D,BAO J,et al.Greedyfool:Distortion-aware sparse adversarial attack[J].Advances in Neural Information Processing Systems,2020,33:11226-11236. [20]CROCE F,HEIN M.Sparse and imperceivable adversarial at-tacks[C]//Proceedings of the IEEE/CVF International Confe-rence on Computer Vision.2019:4724-4732. [21]BAI Z X,WANG H J.Adversarial Example Generation Method Based on Improved Genetic Algorithm[J].Computer Enginee-ring,2023,49(5):139-149. [22]LI Z,CHENG H,CAI X,et al.Sa-es:Subspace activation evolution strategy for black-box adversarial attacks[J].IEEE Transactions on Emerging Topics in Computational Intelligence,2022,7(3):780-790. [23]WANG H,ZHU C,CAO Y,et al.ADSAttack:An Adversarial Attack Algorithm via Searching Adversarial Distribution in Latent Space[J].Electronics,2023,12(4):816. [24]VO V Q,ABBASNEJAD E,RANASINGHE D C.BruSLeAttack:A Query-Efficient Score-Based Black-Box Sparse Adversarial Attack[J].arXiv:2404.05311,2024. [25]CHATTOPADHAY A,SARKAR A,HOWLADER P,et al.Grad-cam++:Generalized gradient-based visual explanations for deep convolutional networks[C]//2018 IEEE Winter Confe-rence on Applications of Computer Vision(WACV).IEEE,2018:839-847. [26]ANDRIUSHCHENKO M,CROCE F,FLAMMARION N,et al.Square attack:a query-efficient black-box adversarial attack via random search[C]//European Conference on Computer Vision.Cham:Springer,2020:484-501. [27]LIN C,HAN S,ZHU J,et al.Sensitive region-aware black-box adversarial attacks[J].Information Sciences,2023,637:118929. [28]DENG J,DONG W,SOCHER R,et al.Imagenet:A large-scale hierarchical image database[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2009:248-255. [29]SIMONYAN K.Very deep convolutional networks for large-scale image recognition[J].arXiv:1409.1556,2014. [30]SZEGEDY C,VANHOUCKE V,IOFFE S,et al.Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:2818-2826. [31]YUAN L,CHEN Y,WANG T,et al.Tokens-to-token vit:Training vision transformers from scratch on imagenet[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:558-567. [32]POMPONI J,SCARDAPANE S,UNCINI A.Pixle:a fast and effective black-box attack based on rearranging pixels[C]//2022 International Joint Conference on Neural Networks(IJCNN).IEEE,2022:1-7. [33]KIM H.Torchattacks:A pytorch repository for adversarial at-tacks[J].arXiv:2010.01950,2020. [34]BANY MUHAMMAD M,YEASIN M.Eigen-CAM:Visual explanations for deep convolutional neural networks[J].SN Computer Science,2021,2(1):47. |
| [1] | LYU Zhenghao, XIAN Hequn. Deep Learning Model Protection Method Based on Robust Partitioned Watermarking [J]. Computer Science, 2026, 53(1): 423-429. |
| [2] | JIANG Yunliang, JIN Senyang, ZHANG Xiongtao, LIU Kaining, SHEN Qing. Multi-scale Multi-granularity Decoupled Distillation Fuzzy Classifier and Its Application inEpileptic EEG Signal Detection [J]. Computer Science, 2025, 52(9): 37-46. |
| [3] | ZHENG Xu, HUANG Xiangjie, YANG Yang. Reversible Facial Privacy Protection Method Based on “Invisible Masks” [J]. Computer Science, 2025, 52(5): 384-391. |
| [4] | CHEN Zigang, PAN Ding, LENG Tao, ZHU Haihua, CHEN Long, ZHOU Yousheng. Explanation Robustness Adversarial Training Method Based on Local Gradient Smoothing [J]. Computer Science, 2025, 52(2): 374-379. |
| [5] | WANG Liuyi, ZHOU Chun, ZENG Wenqiang, HE Xingxing, MENG Hua. High-frequency Feature Masking-based Adversarial Attack Algorithm [J]. Computer Science, 2025, 52(10): 374-381. |
| [6] | YUAN Mengjiao, LU Tianliang, HUANG Wanxin, HE Houhan. Benign-salient Region Based End-to-End Adversarial Malware Generation Method [J]. Computer Science, 2025, 52(10): 382-394. |
| [7] | ZHU Fukun, TENG Zhen, SHAO Wenze, GE Qi, SUN Yubao. Semantic-guided Neural Network Critical Data Routing Path [J]. Computer Science, 2024, 51(9): 155-161. |
| [8] | XIN Bo, DING Zhijun. Interpretable Credit Evaluation Model for Delayed Label Scenarios [J]. Computer Science, 2024, 51(8): 45-55. |
| [9] | WANG Chundong, LI Quan, FU Haoran, HAO Qingbo. Face Anti-spoofing Method with Adversarial Robustness [J]. Computer Science, 2024, 51(6A): 230400022-7. |
| [10] | QIAO Fan, WANG Peng, WANG Wei. Multivariate Time Series Classification Algorithm Based on Heterogeneous Feature Fusion [J]. Computer Science, 2024, 51(2): 36-46. |
| [11] | WANG Baocai, WU Guowei. Feature-weighted Counterfactual Explanation Method:A Case Study in Credit Risk Control Scenarios [J]. Computer Science, 2024, 51(12): 259-268. |
| [12] | GUO Yuqi, LI Dongyang, YAN Bin, WANG Linyuan. Black-box Adversarial Attack Methods on Modulation Recognition Neural Networks Based onSignal Proximal Linear Combination [J]. Computer Science, 2024, 51(10): 425-431. |
| [13] | ZHOU Fengfan, LING Hefei, ZHANG Jinyuan, XIA Ziwei, SHI Yuxuan, LI Ping. Facial Physical Adversarial Example Performance Prediction Algorithm Based on Multi-modal Feature Fusion [J]. Computer Science, 2023, 50(8): 280-285. |
| [14] | LI Kun, GUO Wei, ZHANG Fan, DU Jiayu, YANG Meiyue. Adversarial Malware Generation Method Based on Genetic Algorithm [J]. Computer Science, 2023, 50(7): 325-331. |
| [15] | WANG Dongli, YANG Shan, OUYANG Wanli, LI Baopu, ZHOU Yan. Explainability of Artificial Intelligence:Development and Application [J]. Computer Science, 2023, 50(6A): 220600212-7. |
|
||