Computer Science ›› 2026, Vol. 53 ›› Issue (1): 423-429.doi: 10.11896/jsjkx.241200005
• Information Security • Previous Articles
LYU Zhenghao1,2, XIAN Hequn1,3
CLC Number:
| [1]BALCZEWSKI E A,CAO J,SINGH K.Risk prediction and machine learning:a case-based overview[J].Clinical Journal of the American Society of Nephrology,2023,18(4):524-526. [2]NALISNICK E,SMYTH P,TRAN D.A brief tour of deeplearning from a statistical perspective[J].Annual Review of Statistics and Its Application,2023,10(1):219-246. [3]ZHANG H,SHAO H.Exploring the Latest Applications ofOpenAI and ChatGPT:An In-Depth Survey[J].CMES-Compu-ter Modeling in Engineering & Sciences,2024,138(3):2061-2102. [4]XU P,JI X,LI M,et al.Small data machine learning in materials science[J].NPJ Computational Materials,2023,9(1):42. [5]DAIDONE M,FERRANTELLI S,TUTTOLOMONDO A.Machine learning applications in stroke medicine:Advancements,challenges,and future prospectives[J].Neural Regeneration Research,2024,19(4):769-773. [6]LAI Q,YANG L,HU G,et al.Constructing multiscroll memristive neural network with local activity memristor and application in image encryption[J].IEEE Transactions on Cybernetics,2024,54(7):4039-4048. [7]GOLDBERG Y.A primer on neural network models for natural language processing[J].Journal of Artificial Intelligence Research,2016,57:345-420. [8]MEHRISH A,MAJUMDER N,BHARADWAJ R,et al.A review of deep learning techniques for speech processing[J].Information Fusion,2023,99:101869. [9]CHIB P S,SINGH P.Recent Advancements in End-to-End Autonomous Driving Using Deep Learning:A Survey[J].IEEE Transactions on Intelligent Vehicles,2024,9(1):103-118. [10]KIM J,KIM J,KIM H,et al.CNN-based network intrusion detection against denial-of-service attacks[J].Electronics,2020,9(6):916. [11]LI Y,YAN H,HUANG T,et al.Model architecture level privacy leakage in neural networks[J].Science China Information Sciences,2024,67(3):132101. [12]AKHTAR N,MIAN A.Threat of adversarial attacks on deep learning in computer vision:A survey[J].IEEE Access,2018,6:14410-14430. [13]PENG S,CHEN Y,XU J,et al.Intellectual property protection of DNN models[J].World Wide Web,2023,26(4):1877-1911. [14]OREKONDY T,SCHIELE B,FRITZ M.Knockoff Nets:Stea-ling functionality of black-box models[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:4954-4963. [15]WU H,ZHANG J,LI Y,et al.Overview of artificial intelligence model watermarking[J].Journal of Image Graphics,2023,28(6):1792-1810. [16]KAHNG A B,LACH J,MANGIONE-SMITH W H,et al.Watermarking techniques for intellectual property protection[C]//Proceedings of the 35th Annual Design Automation Conference.1998:776-781. [17]KUMAR J,KUMAR M.Comparison of image compressionmethods on various images[C]//2015 International Conference on Advances in Computer Engineering and Applications.IEEE,2015:114-118. [18]HE Y,XIAO L.Structured pruning for deep convolutional neural networks:A survey[J].IEEE Transactions on Pattern Ana-lysis and Machine Intelligence,2023,46(5):2900-2919. [19]CHURCH K W,CHEN Z,MA Y.Emerging trends:A gentle introduction to fine-tuning[J].Natural Language Engineering,2021,27(6):763-778. [20]UCHIDA Y,NAGAI Y,SAKAZAWA S,et al.Embedding watermarks into deep neural networks[C]//Proceedings of the 2017 ACM on International Conference on Multimedia Retrie-val.2017:269-277. [21]ADI Y,BAUM C,CISSE M,et al.Turning your weakness intoa strength:Watermarking deep neural networks by backdooring[C]//27th USENIX Security Symposium(USENIX Security 18).2018:1615-1631. [22]LEE S,SONG W,JANA S,et al.Evaluating the robustness of trigger set-based watermarks embedded in deep neural networks[J].IEEE Transactions on Dependable and Secure Computing,2022,20(4):3434-3448. [23]YOSINSKI J,CLUNE J,BENGIO Y,et al.How transferableare features in deep neural networks?[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems.2014:3320-3328. [24]LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-basedlearning applied to document recognition[C]//Proceedings of the IEEE.1998:2278-2324. [25]KRIZHEVSKY A,HINTON G.Learning multiple layers of features from tiny images[EB/OL].https://www.cs.utoronto.ca/~kriz/learning-features-2009-TR.pdf. [26]LIAN D,ZHOU D,FENG J,et al.Scaling & shifting your features:A new baseline for efficient model tuning[J].Advances in Neural Information ProcessingSystems,2022,35:109-123. [27]ZHANG Y,WU H,LIN F,et al.Deep learning model pruning technology in image recognition[J].Journal of Nanjing University of Science and Technology,2023,47:699-707. [28]FAN L,NG K W,CHAN C S.Rethinking deep neural network ownership verification:Embedding passports to defeat ambiguity attacks[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems.2019:4714-4723. [29]CHEN H,ROUHANI B D,KOUSHANFAR F.Blackmarks:Blackbox multibit watermarking for deep neural networks[J].arXiv:1904.00344,2019. [30]LYU P,MA H,CHEN K,et al.MEA-Defender:A Robust Watermark against Model Extraction Attack[J].arXiv:2401.15239,2024. [31]LYU P,LI P,ZHU S,et al.Ssl-wm:A black-box watermarking approach for encoders pre-trained by self-supervised learning[J].arXiv:2209.03563,2022. [32]LIU H,WU Y H,LI X D,et al.Deep neural network modelcopyright protection framework based on external samples[J].Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition),2025,37(3):405-416. [33]PENG W P,LIU J B,PING Y,et al.Model protection scheme for fusion of internal and external feature watermarks[J].Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition),2024,36(4):765-774. [34]PODILCHUK C I,DELP E J.Digital watermarking:algorithms and applications[J].IEEE Signal Processing Magazine,2001,18(4):33-46. [35]JIA H,CHOQUETTE-CHOO C A,CHANDRASEKARAN V,et al.Entangled watermarks as a defense against model extraction[C]//30th USENIX Security Symposium(USENIX Security 21).2021:1937-1954. [36]ZHANG J,GU Z,JANG J,et al.Protecting intellectual propertyof deep neural networks with watermarking[C]//Proceedings of the 2018 on Asia Conference on Computer and Communications Security.2018:159-172. |
| [1] | WEN Zerui, JIANG Tian, HUANG Zijian, CUI Xiaohui. Section Sparse Attack:A More Powerful Sparse Attack Method [J]. Computer Science, 2026, 53(1): 323-330. |
| [2] | XIA Zhuoqun, ZHOU Zihao, DENG Bin, KANG Chen. Security Situation Assessment Method for Intelligent Water Resources Network Based on ImprovedD-S Evidence [J]. Computer Science, 2025, 52(6A): 240600051-6. |
| [3] | LI Zhoucheng, ZHANG Yi, SUN Jin. Stochastic Optimization Method for Multi-exit Deep Neural Networks for Edge Intelligence Applications [J]. Computer Science, 2025, 52(4): 85-93. |
| [4] | LIN Zheng, LIU Sicong, GUO Bin, DING Yasan, YU Zhiwen. Adaptive Operator Parallel Partitioning Method for Heterogeneous Embedded Chips in AIoT [J]. Computer Science, 2025, 52(2): 299-309. |
| [5] | CHEN Xianyi, ZHANG Chengjuan, QIAN Jiangfeng, GUO Qianbin, CUI Qi, FU Zhangjie. Highly Robust Model Structure Backdoor Method Based on Feature Distribution [J]. Computer Science, 2025, 52(12): 374-383. |
| [6] | CHEN Ping’an, DENG Qi. Expression Detection Algorithm Based on SSD Network Model Reconstruction [J]. Computer Science, 2025, 52(11A): 250200066-6. |
| [7] | YE Shuai, LI Hao, SHI Peiteng, HUANG Yulin. Deep Neural Network-based Resource Allocation for Large-scale Operation Simulation [J]. Computer Science, 2025, 52(11A): 241000036-5. |
| [8] | HUANG Xinli, GAO Guoju. Adaptive Gradient Sparsification Approach to Training Deep Neural Networks [J]. Computer Science, 2025, 52(11A): 250100106-6. |
| [9] | WANG Liuyi, ZHOU Chun, ZENG Wenqiang, HE Xingxing, MENG Hua. High-frequency Feature Masking-based Adversarial Attack Algorithm [J]. Computer Science, 2025, 52(10): 374-381. |
| [10] | ZHU Fukun, TENG Zhen, SHAO Wenze, GE Qi, SUN Yubao. Semantic-guided Neural Network Critical Data Routing Path [J]. Computer Science, 2024, 51(9): 155-161. |
| [11] | HAN Bing, DENG Lixiang, ZHENG Yi, REN Shuang. Survey of 3D Point Clouds Upsampling Methods [J]. Computer Science, 2024, 51(7): 167-196. |
| [12] | XU Xiaohua, ZHOU Zhangbing, HU Zhongxu, LIN Shixun, YU Zhenjie. Lightweight Deep Neural Network Models for Edge Intelligence:A Survey [J]. Computer Science, 2024, 51(7): 257-271. |
| [13] | ZHU Jin, TAO Chuanqi, GUO Hongjing. Test Input Prioritization Approach Based on DNN Model Output Differences [J]. Computer Science, 2024, 51(6A): 230600121-8. |
| [14] | LI Wenting, XIAO Rong, YANG Xiao. Improving Transferability of Adversarial Samples Through Laplacian Smoothing Gradient [J]. Computer Science, 2024, 51(6A): 230800025-6. |
| [15] | ZHONG Zhenyu, LIN Yongliang, WANG Haotian, LI Dongwen, SUN Yufei, ZHANG Yuzhi. Automatic Pipeline Parallel Training Framework for General-purpose Computing Devices [J]. Computer Science, 2024, 51(12): 129-136. |
|
||