Computer Science ›› 2025, Vol. 52 ›› Issue (11A): 241200112-10.doi: 10.11896/jsjkx.241200112
• Image Processing & Multimedia Technology • Previous Articles Next Articles
ZHU Sifan, ZHU Guosheng
CLC Number:
| [1]ODURO J K,OKYERE J,NYADOR J.Risky health behaviours and chronic conditions among aged persons:analysis of SAGE selected countries [J].BMC Geriatr,2023,23(1):145. [2]SALEH G A,BATOUTY N M,HAGGAG S,et al.The role of medical image modalities and AI in the early detection,diagnosis and grading of retinal diseases:a survey[J].Bioengineering,2022,9(8):366. [3]WANG S,CHEN Y,YI Z.A Multi-Scale Attention Fusion Network for Retinal Vessel Segmentation[J].Applied Sciences,2024,14(7):2955. [4]CHEN C,CHUAH J H,ALI R,et al.Retinal Vessel Segmentation Using Deep Learning:A Review [J].IEEE Access,2021,9:111985-112004. [5]XU M,CHEN S,GAO X,et al.Research on Fast Multi-Threshold Image Segmentation Technique Using Histogram Analysis[J].Electronics,2023,12(21):4446. [6]WISAENG K.Retinal blood vessel segmentation using density-based fuzzy C-means clustering and vessel neighborhood connected component[J].Measurement,2024,242:116229. [7]KAR S S,MAITY S P.Blood vessel extraction and optic disc removal using curvelet transform and kernel fuzzy c-means [J].Computer in Biology and Medicine,2016,70:174-189. [8]RICCI E,PERFETTI R.Retinal blood vessel segmentation using line operators and support vector classification [J].IEEE Transactions on Medical Imaging,2007,26(10):1357-1365. [9]SKOUTA A,ELMOUFIDI A,JAI-ANDALOUSSI S,et al.Semantic Segmentation of Retinal Blood Vessels from Fundus Images by using CNN and the Random Forest Algorithm[C]//SENSORNETS.2022:163-170. [10]KUFEL J,BARGIEL-LACZEK K,KOCOT S,et al.What ismachine learning,artificial neural networks and deep learning?-Examples of practical applications in medicine[J].Diagnostics,2023,13(15):2582. [11]COŞKUN M,YILDIRIM Ö,UÇAR A,et al.An overview of popular deep learning methods[J].European Journal of Technique,2017,7(2):165-176. [12]KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenetclassification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems.2012. [13]LONG J,SHELHAMER E,DARRELL T.Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2015:3431-3440. [14]RONNEBERGER O,FISCHER P,BROX T.U-net:Convolutionalnetworks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015:18th International Conference.Springer,2015:234-241. [15]OKTAY O.Attention u-net:Learning where to look for the pancreas[J].arXiv:1804.03999,2018. [16]YANG X,LI Z,GUO Y,et al.DCU-net:A deformable convolutional neural network based on cascade U-net for retinal vessel segmentation[J].Multimedia Tools and Applications,2022,81(11):15593-15607. [17]SZEGEDY C,LIU W,JIA Y,et al.Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2015:1-9. [18]SZEGEDY C,VANHOUCKE V,IOFFE S,et al.Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:2818-2826. [19]ZHOU Z,RAHMAN SIDDIQUEE M M,TAJBAKHSH N,et al.Unet++:A nested u-net architecture for medical image segmentation[C]//Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support:4th International Workshop,DLMIA 2018,and 8th International Workshop,ML-CDS 2018,Held in Conjunction with MICCAI 2018.Springer,2018:3-11. [20]LIU Y P,RUI X,LI Z,et al.Feature pyramid U-Net for retinal vessel segmentation[J].IET Image Processing,2021,15(8):1733-1744. [21]YANG D,LIU G,REN M,et al.A multi-scale feature fusion method based on u-net for retinal vessel segmentation[J].Entropy,2020,22(8):811. [22]SHI Z,WANG T,HUANG Z,et al.MD-Net:A multi-scaledense network for retinal vessel segmentation[J].Biomedical Signal Processing and Control,2021,70:102977. [23]LI J,GAO G,YANG L,et al.A retinal vessel segmentation network with multiple-dimension attention and adaptive feature fusion[J].Computers in Biology and Medicine,2024,172:108315. [24]GUO C,SZEMENYEI M,YI Y,et al.Sa-unet:Spatial attention u-net for retinal vessel segmentation[C]//2020 25th International Conference on Pattern Recognition(ICPR).IEEE,2021:1236-1242. [25]GHIASI G,LIN T Y,LE Q V.Dropblock:A regularizationmethod for convolutional networks[C]//Advances in Neural Information Processing Systems.2018. [26]GOLIA M,IKUDOVÁ E.Retinal blood vessel segmentationand inpainting networks with multi-level self-attention[J].Biomedical Signal Processing and Control,2025,102:107343. [27]SHEN X,XU J,JIA H,et al.Self-attentional microvessel segmentation via squeeze-excitation transformer Unet[J].Compu-terized Medical Imaging and Graphics,2022,97:102055. |
| [1] | JIANG Yunliang, JIN Senyang, ZHANG Xiongtao, LIU Kaining, SHEN Qing. Multi-scale Multi-granularity Decoupled Distillation Fuzzy Classifier and Its Application inEpileptic EEG Signal Detection [J]. Computer Science, 2025, 52(9): 37-46. |
| [2] | LI Mengxi, GAO Xindan, LI Xue. Two-way Feature Augmentation Graph Convolution Networks Algorithm [J]. Computer Science, 2025, 52(7): 127-134. |
| [3] | WANG Yicheng, NING Tai, LIU Xinyu, LUO Ye. Position-aware Based Multi-modality Lung Cancer Survival Prediction Method [J]. Computer Science, 2025, 52(6A): 240500089-8. |
| [4] | GAO Junyi, ZHANG Wei, LI Zelin. YOLO-BFEPS:Efficient Attention-enhanced Cross-scale YOLOv10 Fire Detection Model [J]. Computer Science, 2025, 52(6A): 240800134-9. |
| [5] | LIU Yuanhong, WU Yubin. Local Linear Embedding Algorithm Based on Probability Model and Information Entropy [J]. Computer Science, 2025, 52(6A): 240500021-8. |
| [6] | GU Huijie, FANG Wenchong, ZHOU Zhifeng, ZHU Wen, MA Guang, LI Yingchen. CSO-LSTM Based Power Prediction Method for New Energy Generation [J]. Computer Science, 2025, 52(6A): 240600053-11. |
| [7] | LEI Shuai, QIU Mingxin, LIU Xianhui, ZHANG Yingyao. Image Classification Model for Waste Household Appliance Recycling Based on Multi-scaleDepthwise Separable ResNet [J]. Computer Science, 2025, 52(6A): 240500057-7. |
| [8] | WU Zhihua, CHENG Jianghua, LIU Tong, CAI Yahui, CHENG Bang, PAN Lehao. Human Target Detection Algorithm for Low-quality Laser Through-window Imaging [J]. Computer Science, 2025, 52(6A): 240600069-6. |
| [9] | GUO Yecai, HU Xiaowei, MAO Xiangnan. Multi-scale Feature Fusion Residual Denoising Network Based on Cascade [J]. Computer Science, 2025, 52(6): 239-246. |
| [10] | ZHANG Dabin, WU Qin, ZHOU Haojie. Oriented Object Detection Based on Multi-scale Perceptual Enhancement [J]. Computer Science, 2025, 52(6): 247-255. |
| [11] | ZHANG Xinyan, TANG Zhenchao, LI Yifu, LIU Zhenyu. Two-stage Left Atrial Scar Segmentation Based on Multi-scale Attention and Uncertainty Loss [J]. Computer Science, 2025, 52(6): 264-273. |
| [12] | MIAO Zhuang, CUI Haoran, ZHANG Qiyang, WANG Jiabao, LI Yang. Restoration of Atmospheric Turbulence-degraded Images Based on Contrastive Learning [J]. Computer Science, 2025, 52(5): 171-178. |
| [13] | KONG Yu, XIONG Fengguang, ZHANG Zhiqiang, SHEN Chaofan, HU Mingyue. Low Overlap Point Cloud Registration Method Based on Deep Position-aware Transformer [J]. Computer Science, 2025, 52(5): 199-211. |
| [14] | MENG Sijiang, WANG Hongxia, ZENG Qiang, ZHOU Yang. Multi-view and Multi-scale Fusion Attention Network for Document Image Forgery Localization [J]. Computer Science, 2025, 52(4): 327-335. |
| [15] | LI Xiaolan, MA Yong. Study on Lightweight Flame Detection Algorithm with Progressive Adaptive Feature Fusion [J]. Computer Science, 2025, 52(4): 64-73. |
|
||