Computer Science ›› 2025, Vol. 52 ›› Issue (6): 239-246.doi: 10.11896/jsjkx.240300058
• Computer Graphics & Multimedia • Previous Articles Next Articles
GUO Yecai1,2, HU Xiaowei1, MAO Xiangnan1
CLC Number:
[1]SOLOMON C,BRECKON T.Fundamentals of Digital ImageProcessing:A Practical Approach with Examples in Matlab[M].Chichester:Wiley-Blackwell,2011:6-7. [2]AFONSO M V,BIOUCAS-DIAS J M,FIGUEIREDO M A T.Fast Image Recovery using Variable Splitting and Constrained Optimization[J].IEEE transactions on image processing,2010,19(9):2345-2356. [3]ANWARS S,BARNES N.Real Image Denoising with FeatureAttention[C]//IEEE/CVF International Conference on Computer Vision.Korea:IEEE,2019:3155-3164. [4]WU W C.Research on Image Denoising Method Based on Convolutional Neural Network[D].Kunming:Yunnan Normal University,2023. [5]FENG Y Z,LIU J X,WANG H Y,et al.Real Image Denoising Method Based on Multi-Level Residual Information Distillation[J].Computer Engineering,2024,50(3):216-223. [6]KIM Y,SOH J W,PARK G Y,et al.Transfer Learning from Synthetic to Real-Noise Denoising with Adaptive Instance Normalization[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle,USA:IEEE,2020:3479- 3489. [7]YUE Z,ZHAO Q,ZHANG L,et al.Dual Adversarial Network:Toward Real-World Noise Removal and Noise Generation[C]//Proceedings of the European Conference on Computer Vision.Cham:Springer International Publishing,2020:41-58. [8]FOI A,TRIMECHE M,KATKOVNIK V,et al.Practical Poissonian-Gaussian Noise modeling and fitting for Single-Image Raw-Data[J].IEEE Transactions on Image Processing,2008,17(10):1737-1754. [9]HEIDE F,STEINBERGER M,TSAI Y T,et al.Flexisp:AFlexible Camera Image Processing Framework[J].ACM Tran-sactions on Graphics,2014,33(6):1-13. [10]DABOV K,FOI A,KATKOVNIK V,et al.Image Denoising by Sparse 3D Transform-Domain Collaborative Filtering[J].IEEE Transactions onImage Processing,2007,16(8):2080-2095. [11]HUANG G,LIU Z,VAN DER MAATEN L,et al.Densely connected Convolutional Networks[C]//IEEE Conference on Computer Vision and Pattern Recognition.New York:IEEE,2017:2261-2269. [12]WOO S,PARK J,LEE J Y,et al.CBAM:Convolutional Block Attention Module[C]//Proceedings of the European Conference on Computer Vision.Switzerland:Springer International Publishing,2018:3-19. [13]KOMATSU R,GONSALVES T.Comparing U-Net based Mo-dels for Denoising Color Images[J].AI,2020,1(4):465-486. [14]YIN H T,WANG T Y.Image Denoising Algorithm Based on DeepMulti-Scale Convolutional Sparse Coding [J].Computer Science.2023,50(4):133-140. [15]CRNJANSKI J,KRSTIC M,TOTOVIC A,et al.Adaptive Sig-moid-Like and PReLU Activation Functions for All-Optical Perceptron[J].Optics letters,2021,46(9):2003-2006. [16]JIANG D,QU H,ZHAO J,et al.Aggregating Multi-Scale Contextual Features from Multiple Stages for Semantic Image Segmentation[J].Connection Science,2021,33(3):605-622. [17]PALUBINSKAS G.Image Similarity/Distance Measures:What is really behind MSE and SSIM?[J].International Journal of Image and Data Fusion,2017,8(1):32-53. [18]CHARBONNIER P,BLANC-FERAUD L,AUBERT G,et al.Two Deterministic Half-Quadratic Regularization Algorithms for Computed Imaging[C]//Proceedings of 1st International Conference on Image Processing.New York:IEEE,1994:168-172. [19]JIANG K,WANG Z,YI P,et al.Multi-Scale Progressive Fusion Network for Single Image Deraining[C]//IEEE/CVF Confe-rence on Computer Vision and Pattern Recognition.New York:IEEE,2020:8343-8352. [20]ABDELHAMED A,LIN S,BROWN M S.A High-Quality Denoising Dataset for Smartphone Cameras[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition.New York:IEEE,2018:1692-1700. [21]PLOTZ T,ROTH S.Benchmarking Denoising Algorithms with Real Photographs[C]//IEEE Conference on Computer Vision and Pattern Recognition.New York:IEEE,2017:2750- 2759. [22]LEBRUN M,COLOM M,MOREL J M.The Noise Clinic:A Blind Image Denoising Algorithm[J].Image Processing on Line,2015(5):1-54. [23]TONG Y B,ZHANG Q S,QI Y P.Image Quality Assessing by Combining PSNR with SSIM[J].Journal of Image and Gra-phics,2006,11(12):1758-1763. [24]CAZENAV T,SENTUC J,VIDEAU M.Cosine Annealing,Mixnet and Swish Activation for Computer Go[M].Cham:Springer International Publishing,2021:53-60. [25]KINGMA D,BA J.Adam:A Method for Stochastic Optimization[C]//International Conference for Learning Representations.New York:IEEE,2014:1-15. [26]YU X,FU Z,GE C.A Multi-Scale Generative Adversarial Network for Real-World Image Denoising[J].Signal,Image and Video Processing,2022,16(1):257-264. [27]SOH J W,CHO N I.Variational Deep Image Restoration [J].IEEE Transactions on Image Processing,2022,31:4363-4376. |
[1] | SHI Xincheng, WANG Baohui, YU Litao, DU Hui. Study on Segmentation Algorithm of Lower Limb Bone Anatomical Structure Based on 3D CTImages [J]. Computer Science, 2025, 52(6A): 240500119-9. |
[2] | LONG Xiao, HUANG Wei, HU Kai. Bi-MI ViT:Bi-directional Multi-level Interaction Vision Transformer for Lung CT ImageClassification [J]. Computer Science, 2025, 52(6A): 240700183-6. |
[3] | WANG Jiamin, WU Wenhong, NIU Hengmao, SHI Bao, WU Nier, HAO Xu, ZHANG Chao, FU Rongsheng. Review of Concrete Defect Detection Methods Based on Deep Learning [J]. Computer Science, 2025, 52(6A): 240900137-12. |
[4] | CHENG Yan, HE Huijuan, CHEN Yanying, YAO Nannan, LIN Guobo. Study on interpretable Shallow Class Activation Mapping Algorithm Based on Spatial Weights andInter Layer Correlation [J]. Computer Science, 2025, 52(6A): 240500140-7. |
[5] | WANG Baohui, GAO Zhan, XU Lin, TAN Yingjie. Research and Implementation of Mine Gas Concentration Prediction Algorithm Based on Deep Learning [J]. Computer Science, 2025, 52(6A): 240400188-7. |
[6] | WANG Chenyuan, ZHANG Yanmei, YUAN Guan. Class Integration Test Order Generation Approach Fused with Deep Reinforcement Learning andGraph Convolutional Neural Network [J]. Computer Science, 2025, 52(6): 58-65. |
[7] | WEI Xiaohui, GUAN Zeyu, WANG Chenyang, YUE Hengshan, WU Qi. Hardware-Software Co-design Fault-tolerant Strategies for Systolic Array Accelerators [J]. Computer Science, 2025, 52(5): 91-100. |
[8] | PANG Mingyi, WEI Xianglin, ZHANG Yunxiang, WANG Bin, ZHUANG Jianjun. Efficient Adaptive CNN Accelerator for Resource-limited Chips [J]. Computer Science, 2025, 52(4): 94-100. |
[9] | XIONG Qibing, MIAO Qiguang, YANG Tian, YUAN Benzheng, FEI Yangyang. Malicious Code Detection Method Based on Hybrid Quantum Convolutional Neural Network [J]. Computer Science, 2025, 52(3): 385-390. |
[10] | WU Yibo, HAO Yingguang, WANG Hongyu. Rice Defect Segmentation Based on Dual-stream Convolutional Neural Networks [J]. Computer Science, 2024, 51(6A): 230600107-8. |
[11] | SUN Yang, DING Jianwei, ZHANG Qi, WEI Huiwen, TIAN Bowen. Study on Super-resolution Image Reconstruction Using Residual Feature Aggregation NetworkBased on Attention Mechanism [J]. Computer Science, 2024, 51(6A): 230600039-6. |
[12] | YUAN Zhen, LIU Jinfeng. Denoising Autoencoders Based on Lossy Compress Coding [J]. Computer Science, 2024, 51(6A): 230400172-7. |
[13] | DAI Yongdong, JIN Yang, DAI Yufan, FU Jing, WANG Maofei, LIU Xi. Study on Intelligent Defect Recognition Algorithm of Aerial Insulator Image [J]. Computer Science, 2024, 51(6A): 230700172-5. |
[14] | HUANG Rui, XU Ji. Text Classification Based on Invariant Graph Convolutional Neural Networks [J]. Computer Science, 2024, 51(6A): 230900018-5. |
[15] | WEI Niannian, HAN Shuguang. New Solution for Traveling Salesman Problem Based on Graph Convolution and AttentionNeural Network [J]. Computer Science, 2024, 51(6A): 230700222-8. |
|