Computer Science ›› 2025, Vol. 52 ›› Issue (11): 13-21.doi: 10.11896/jsjkx.241200198
• Research and Application of Large Language Model Technology • Previous Articles Next Articles
FANG Quan1, ZHANG Jinlong2, WANG Bingqian1, HU Jun3
CLC Number:
| [1]LIN Z Y,YANG D Q,WANG T J,et al.Keyword Query Based on Relational Databases[J].Journal of Software,2010,21(10):2454-2476. [2]SU Y,YANG S,SUN H,et al.Exploiting relevance feedback in knowledge graph search[C]//Proceedings of the 21th ACM Sigkdd International Conference on Knowledge Discovery and Data Mining.2015:1135-1144. [3]GREEN J R B F,WOLF A K,CHOMSKY C,et al.Baseball:an automatic question-answerer[C]// Western Joint IRE-AIEE-ACM Computer Conference.1961:219-224. [4]WOODS W A.Progress in natural language understanding:an application to lunar geology[C]// National Computer Confe-rence and Exposition.1973:441-450. [5]PEI Z,ZHANG J,XIONG W,et al.A general framework forChinese domain knowledge graph question answering based on TransE[C]//Journal of Physics:Conference Series.IOP Publishing,2020:012136. [6]CHANG Y,WANG X,WANG J,et al.A survey on evaluation of large language models[J].ACM Transactions on Intelligent Systems and Technology, 2024,15(3):39.1-39.45. [7]WEN S,QIAN L,HU M D,et al.A Review of Research Progress on Question Answering Technology Based on Large Language Models[J].Data Analysis and Knowledge Discovery,2024,8(6):16-29. [8]MARX E,USBECK R,NGOMO A C N,et al.Towards an open question answering architecture[C]//Proceedings of the 10th International Conference on Semantic Systems.2014:57-60. [9]AUER S,BIZER C,KOBILAROV G,et al.Dbpedia:A nucleus for a web of open data[C]//International Semantic Web Confe-rence.Berlin:Springer,2007:722-735. [10]SINGH K,RADHAKRISHNA A S,BOTH A,et al.Why reinvent the wheel:Let's build question answering systems together[C]//Proceedings of the 2018 World Wide Web Conference.2018:1247-1256. [11]DIEFENBACH D,MIGLIATTI P H,QAWASMEH O,et al.QAnswer:A Question Answering prototype bridging the gap between a considerable part of the LOD cloud and end-users[C]//The World Wide Web Conference.2019:3507-3510. [12]DIEFENBACH D,LOPEZ V,SINGH K,et al.Core techniques of question answering systems over knowledge bases:a survey[J].Knowledge and Information Systems,2018,55:529-569. [13]ZOU L,HUANG R,WANG H,et al.Natural language question answering over RDF:a graph data driven approach[C]//Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data.2014:313-324. [14]YAHYA M,BERBERICH K,ELBASSUONI S,et al.Natural language questions for the web of data[C]//Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning.2012:379-390. [15]SHEKARPOUR S,MARX E,NGOMO A C N,et al.Sina:Semantic interpretation of user queries for question answering on interlinked data[J].Journal of Web Semantics,2015,30:39-51. [16]BROWN T,MANN B,RUDER N,et al.Language models are few-shot learners[C]//Advances in Neural Information Processing Systems.2020:1877-1901. [17]XIE S M,RAGHUNATHAN A,LIANG P,et al.An explanation of in-context learning as implicit bayesian inference[J].arXiv:2111.02080,2021. [18]WIES N,LEVINE Y,SHASHUA A.The learnability of in-context learning[C]//Advances in Neural Information Processing Systems.2024. [19]LEWIS P,PEREZ E,PIKTUS A,et al.Retrieval-augmentedgeneration for knowledge-intensive nlp tasks[C]//Advances in Neural Information Processing Systems.2020:9459-9474. [20]LUO H,TANG Z,PENG S,et al.Chatkbqa:A generate-then-retrieve framework for knowledge base question answering with fine-tuned large language models[J].arXiv:2310.08975,2023. [21]LIN X V,CHEN X,CHEN M,et al.Ra-dit:Retrieval-augmented dual instruction tuning[J].arXiv:2310.01352,2023. [22]LIU X,LAI H,YU H,et al.Webglm:Towards an efficient web-enhanced question answering system with human preferences[C]//Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.2023:4549-4560. [23]MA H,CAO J,FANG Y,et al.Retrieval-based gradient boosting decision trees for disease risk assessment[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.2022:3468-3476. [24]WIRATUNGA N,ABEYRANTNE R,JAYAWARDENA L,et al.CBR-RAG:case-based reasoning for retrieval augmented generation in LLMs for legal question answering[C]//International Conference on Case-Based Reasoning.Cham:Springer,2024:445-460. [25]SARMAH B,MEHTA D,HALL B,et al.Hybridrag:Integra-ting knowledge graphs and vector retrieval augmented generation for efficient information extraction[C]//Proceedings of the 5th ACM International Conference on AI in Finance.2024:608-616. [26]HU E J,SHEN Y,WALLIS P,et al.Lora:Low-rank adaptation of large language models[J].arXiv:2106.09685,2021. [27]VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[C]//Advances in Neural Information Processing Systems.2017. [28]XU M.Text2vec:Text to vector toolkit(Version 1.1.2) [EB/OL].https://github.com/shibing624/text2vec. [29]ZHAO H,YUAN S,LENG J,et al.Calculating Question Similarity is Enough:A New Method for KBQA Tasks[J].arXiv:2111.07658,2021. [30]LI Y,SOSEA T,SAWANT A,et al.P-stance:A large datasetfor stance detection in political domain[C]//Findings of the Association for Computational Linguistics:ACL-IJCNLP 2021.2021:2355-2365. [31]LlamaFamily.Llama Chinese[EB/OL].[2024-02-14].https://github.com/LlamaFamily/Llama-Chinese/tree/main. [32]TOUVRON H,LAVRIL T,IZACARD G,et al.Llama:Openand efficient foundation language models[J].arXiv:2302.13971,2023. [33]CHIANG W L,LI Z,LIN Z,et al.Vicuna:An open-source chatbot impressing gpt-4 with 90%* chatgpt quality[EB/OL].https://vicuna.lmsys.org. [34]YANG A,XIAO B,WANG B,et al.Baichuan 2:Open large-scale language models[J].arXiv:2309.10305,2023. [35]CUI Y,YANG Z,YAO X.Efficient and effective text encoding for chinese llama and alpaca[J].arXiv:2304.08177,2023. [36]WU T,HE S,LIU J,et al.A brief overview of ChatGPT:The history,status quo and potential future development[J].IEEE/CAA Journal of Automatica Sinica,2023,10(5):1122-1136. [37]RADFORD A,NARASIMHAN K,SALIMANS T,et al.Improving language understanding by generative pre-training[EB/OL].https://gwern.net/doc/www/s3-us-west-2.amazonaws.com/d73fdc5ffa8627bce44dcda2fc012da638ffb158.pdf. [38]ZENG A,LIU X,DU Z,et al.Glm-130b:An open bilingual pre-trained model[J].arXiv:2210.02414,2022. [39]ZHANG Y,XU G,FU X,et al.Adversarial training improved multi-path multi-scale relation detector for knowledge base question answering[J].IEEE Access,2020,8:63310-63319. [40]ZHOU G,XIE Z,YU Z,et al.DFM:A parameter-shared deep fused model for knowledge base question answering[J].Information Sciences,2021,547:103-118. [41]ZHAO H,YUAN S,LENG J,et al.Calculating Question Similarity is Enough:A New Method for KBQA Tasks[J].arXiv:2111.07658,2021. [42]YANG E,HAO F,SHANG J,et al.BT-CKBQA:An efficientapproach for Chinese knowledge base question answering[J].Data & Knowledge Engineering,2023,147:102204. [43]HAO H,SUN X,WEI J.A semantic union model for open domain Chinese knowledge base question answering[J].Scientific Reports,2023,13(1):11903. [44]PRASANNA K S L,LOKESH S,CHANDRAMOULI G,et al.BERT-QA:Empowering Intelligent Question Answering with NLP and Entity Recognition[C]//2024 3rd International Conference on Applied Artificial Intelligence and Computing(ICAAIC).IEEE,2024:1006-1010. [45]AUGENSTEIN I,ROCKTASCHEL T,VLACHOS A,et al.Stance Detection with Bidirectional Conditional Encoding[C]//EMNLP 2016.The Association for Computational Linguistics.2016:876-885. [46]YOON K.Convolutional neural networks for sentence classification[C]//EMNLP.2014:1746-1751. [47]DU J,XU R,HE Y,et al.Stance classification with target-specific neural attention networks[C]//26th International Joint Conference on Artificial Intelligence(IJCAI 2017).International Joint Conferences on Artificial Intelligence,2017:3988-3994. [48]SHIN T,RAZEGHI Y,LOGAN IV R L,et al.Autoprompt:Eliciting knowledge from language models with automatically generated prompts[J].arXiv:2010.15980,2020. [49]XUE W,LI T.Aspect based sentiment analysis with gated con-volutional networks[J].arXiv:1805.07043,2018. [50]HUANG B,CARLEY K M.Parameterized Convolutional Neural Networks for Aspect Level Sentiment Classification[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.2018:1091-1096. [51]KENTON J D M W C,TOUTANOVA L K.Bert:Pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of naacL-HLT.2019:2. [52]DU Z,QIAN Y,LIU X,et al.Glm:General language model pretraining with autoregressive blank infilling[J].arXiv:2103.10360,2021. |
| [1] | PENG Jiao, HE Yue, SHANG Xiaoran, HU Saier, ZHANG Bo, CHANG Yongjuan, OU Zhonghong, LU Yanyan, JIANG dan, LIU Yaduo. Text-Dynamic Image Cross-modal Retrieval Algorithm Based on Progressive Prototype Matching [J]. Computer Science, 2025, 52(9): 276-281. |
| [2] | LI Junwen, SONG Yuqiu, ZHANG Weiyan, RUAN Tong, LIU Jingping, ZHU Yan. Cross-lingual Information Retrieval Based on Aligned Query [J]. Computer Science, 2025, 52(8): 259-267. |
| [3] | LI Maolin, LIN Jiajie, YANG Zhenguo. Confidence-guided Prompt Learning for Multimodal Aspect-level Sentiment Analysis [J]. Computer Science, 2025, 52(7): 241-247. |
| [4] | CHEN Jinyin, XI Changkun, ZHENG Haibin, GAO Ming, ZHANG Tianxin. Survey of Security Research on Multimodal Large Language Models [J]. Computer Science, 2025, 52(7): 315-341. |
| [5] | LI Bo, MO Xian. Application of Large Language Models in Recommendation System [J]. Computer Science, 2025, 52(6A): 240400097-7. |
| [6] | BAI Yuntian, HAO Wenning, JIN Dawei. Study on Open-domain Question Answering Methods Based on Retrieval-augmented Generation [J]. Computer Science, 2025, 52(6A): 240800141-7. |
| [7] | ZHANG Le, CHE Chao, LIANG Yan. Hallucinations Proactive Relief in Diabetes Q&A LLM [J]. Computer Science, 2025, 52(6A): 240700182-10. |
| [8] | HU Caishun. Study on Named Entity Recognition Algorithms in Audit Domain Based on Large LanguageModels [J]. Computer Science, 2025, 52(6A): 240700190-4. |
| [9] | ZENG Fanyun, LIAN Hechun, FENG Shanshan, WANG Qingmei. Material SEM Image Retrieval Method Based on Multi-scale Features and Enhanced HybridAttention Mechanism [J]. Computer Science, 2025, 52(6A): 240800014-7. |
| [10] | TANG Lijun , YANG Zheng, ZHAO Nan, ZHAI Suwei. FLIP-based Joint Similarity Preserving Hashing for Cross-modal Retrieval [J]. Computer Science, 2025, 52(6A): 240400151-10. |
| [11] | GAO Hongkui, MA Ruixiang, BAO Qihao, XIA Shaojie, QU Chongxiao. Research on Hybrid Retrieval-augmented Dual-tower Model [J]. Computer Science, 2025, 52(6): 324-329. |
| [12] | PAN Jie, WANG Juan, WANG Nan. Large Language Models and Rumors:A Survey on Generation and Detection [J]. Computer Science, 2025, 52(11): 1-12. |
| [13] | ZHANG Haoran, HAO Wenning, JIN Dawei, CHENG Kai, ZHAI Ying. DF-RAG:A Retrieval-augmented Generation Method Based on Query Rewriting and Knowledge Selection [J]. Computer Science, 2025, 52(11): 30-39. |
| [14] | ZHOU Yuchen, LI Peng, HAN Keji. Instruct-Malware:Control Flow Graph Based Large Language Model Analysis of Malware [J]. Computer Science, 2025, 52(11): 40-48. |
| [15] | CHEN Yuyan, JIA Jiyuan, CHANG Jingwen, ZUO Kaiwen, XIAO Yanghua. SPEAKSMART:Evaluating Empathetic Persuasive Responses by Large Language Models [J]. Computer Science, 2025, 52(10): 217-230. |
|
||