Computer Science ›› 2025, Vol. 52 ›› Issue (11): 40-48.doi: 10.11896/jsjkx.241100118
• Research and Application of Large Language Model Technology • Previous Articles Next Articles
ZHOU Yuchen1, LI Peng1,2, HAN Keji1,2
CLC Number:
| [1]Av-Test.Malware Statistics & Trends Report by Av-Test[EB/OL].https://www.av-test.org/en/statistics/malware. [2]SHARMA O,SHARMA A,KALIA A.Windows and IoT Malware Visualization and Classification with Deep CNN and Xception CNN Using Markov Images[J].Journal of Intelligent Information Systems,2023,60(2):349-375. [3]ALZUBI O A,ALZUBI J A,ALZUBI T M,et al.QuantumMayfly Optimization with Encoder-Decoder Driven LSTM Networks for Malware Detection and Classification Model[J].Mobile Networks and Applications,2023,28(2):795-807. [4]XIAO G Q,LI X Q,CHEN Y D,et al.A Review of Large-Scale Graph Neural Networks[J].Journal of Computer Science,2024,47(1):148-171. [5]YAN J,YAN G,JIN D.Classifying Malware Represented asControl Flow Graphs Using Deep Graph Convolutional Neural Network[C]//2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks(DSN).2019:52-63. [6]WU B,XU Y,ZOU F.Malware Classification by Learning Semantic and Structural Features of Control Flow Graphs[C]//2021 IEEE 20th International Conference on Trust,Security and Privacy in Computing and Communications.2021:540-547. [7]YING Z,BOURGEOIS D,YOU J,et al.Gnnexplainer:Generating Explanations for Graph Neural Networks[C]//Advances in Neural Information Processing Systems.2019:9240-9251. [8]YUAN H,YU H,WANG J,et al.On Explainability of GraphNeural Networks Via Subgraph Explorations[C]//International Conference on Machine Learning.2021:12241-12252. [9]HERATH J D,WAKODIKAR P P,YANG P,et al.Cfgexplainer:Explaining Graph Neural Network-Based Malware Classification From Control Flow Graphs[C]//2022 52nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks(DSN).2022:172-184. [10]LUO D,CHENG W,XU D,et al.Parameterized Explainer for Graph Neural Network[C]//Advances in Neural Information Processing Systems.2020:19620-19631. [11]ZENG A,LIU X,DU Z,et al.Glm-130B:An Open Bilingual Pre-Trained Model[C]//Proceedings of the International Conference on Learning Representations.2023:1-56. [12]Openai.Chatgpt:A Language Model for Conversational AI[EB/OL].https://chatgpt.com/. [13]LIU H,LI C,WU Q,et al.Visual Instruction Tuning[C]//Advances in Neural Information Processing Systems.2024:34892-34916. [14]ZHU D,CHEN J,SHEN X,et al.Minigpt-4:Enhancing Vision-Language Understanding with Advanced Large Language Mo-dels[C]//Proceedings of the International Conference on Lear-ning Representations.2024:1-17. [15]YE Q,XU H,XU G,et al.Mplug-Owl:Modularization Empowers Large Language Models with Multimodality[J].arXiv:2304.14178,2023. [16]WEN Z,FANG Y.Prompt Tuning On Graph-Augmented Low-Resource Text Classification[J].IEEE Transactions on Know-ledge and Data Engineering,2024,36(12):9080-9095. [17]ZHANG H,LI X,BING L.Video-Llama:An Instruction-Tuned Audio-Visual Language Model for Video Understanding[C]//Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing:System Demonstrations.2023:543-553. [18]TANG J,YANG Y,WEI W,et al.Graphgpt:Graph Instruction Tuning for Large Language Models[C]//Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval.2024:491-500. [19]WANG Y,KORDI Y,MISHRA S,et al.Self-Instruct:Aligning Language Models with Self-Generated Instructions[C]//Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics.2023:13484-13508. [20]VASWANI A.Attention is All You Need[C]//Advances in Neural Information Processing Systems.2017:5998-6008. [21]RADFORD A,KIM J W,HALLACY C,et al.Learning Transferable Visual Models From Natural Language Supervision[C]//International Conference on Machine Learning.2021:8748-8763. [22]WEN Z,FANG Y.Augmenting Low-Resource Text Classifica-tion with Graph-Grounded Pre-Training and Prompting[C]//Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval.2023:506-516. [23]LIU S,NIE W,WANG C,et al.Multi-Modal Molecule Structure-Text Model for Text-Based Retrieval and Editing[J].Nature Machine Intelligence,2023,5(12):1447-1457. [24]LU Y,PENG J,ZHU Y,et al.Pre-Training Molecular GraphRepresentations with Motif-Enhanced Message Passing[C]//2024 International Joint Conference on Neural Networks(IJCNN).2024:1-8. [25]OORD A V D,LI Y,VINYALS O.Representation Learningwith Contrastive Predictive Coding[J].arXiv:1807.03748,2018. [26]HU E J,SHEN Y,WALLIS P,et al.Lora:Low-Rank Adaptation of Large Language Models[C]//Proceedings of the International Conference on Learning Representations.2022:1-13. [27]HAMILTON W,YING Z,LESKOVEC J.Inductive Representation Learning On Large Graphs[C]//Advances in Neural Information Processing Systems.2017:1024-1034. [28]KIPF T N,WELLING M.Semi-Supervised Classification withGraph Convolutional Networks[C]//Proceedings of the International Conference on Learning Representations.2017:1-14. [29]VELIČKOVIĆ P,CUCURULL G,CASANOVA A,et al.Graph Attention Networks[C]//Proceedings of the International Conference on Learning Representations.2018:1-12. [30]VELIČKOVIĆ P,FEDUS W,HAMILTON W L,et al.Deep Graph Infomax[C]//Proceedings of the International Confe-rence on Learning Representations.2018:1-17. [31]ZHANG S,LIU Y,SUN Y,et al.Graph-Less Neural Networks:Teaching Old Mlps New Tricks Via Distillation[C]//Procee-dings of the International Conference on Learning Representations.2022:1-21. [32]WEI J,WANG X,SCHUURMANS D,et al.Chain-of-Thought Prompting Elicits Reasoning in Large Language Models[J].Advances in Neural Information Processing Systems,2022,35:24824-24837. [33]LIU H,LI C,LI Y,et al.Improved Baselines with Visual Instruction Tuning[C]//Proceedings of the IEEE/CVF Confe-rence on Computer Vision and Pattern Recognition.2024:26296-26306. |
| [1] | LI Yaru, WANG Qianqian, CHE Chao, ZHU Deheng. Graph-based Compound-Protein Interaction Prediction with Drug Substructures and Protein 3D Information [J]. Computer Science, 2025, 52(9): 71-79. |
| [2] | HUANG Chao, CHENG Chunling, WANG Youkang. Source-free Domain Adaptation Method Based on Pseudo Label Uncertainty Estimation [J]. Computer Science, 2025, 52(9): 212-219. |
| [3] | GUO Husheng, ZHANG Xufei, SUN Yujie, WANG Wenjian. Continuously Evolution Streaming Graph Neural Network [J]. Computer Science, 2025, 52(8): 118-126. |
| [4] | ZHANG Shiju, GUO Chaoyang, WU Chengliang, WU Lingjun, YANG Fengyu. Text Clustering Approach Based on Key Semantic Driven and Contrastive Learning [J]. Computer Science, 2025, 52(8): 171-179. |
| [5] | LUO Xuyang, TAN Zhiyi. Knowledge-aware Graph Refinement Network for Recommendation [J]. Computer Science, 2025, 52(7): 103-109. |
| [6] | HAO Jiahui, WAN Yuan, ZHANG Yuhang. Research on Node Learning of Graph Neural Networks Fusing Positional and StructuralInformation [J]. Computer Science, 2025, 52(7): 110-118. |
| [7] | JIANG Kun, ZHAO Zhengpeng, PU Yuanyuan, HUANG Jian, GU Jinjing, XU Dan. Cross-modal Hypergraph Optimisation Learning for Multimodal Sentiment Analysis [J]. Computer Science, 2025, 52(7): 210-217. |
| [8] | LI Maolin, LIN Jiajie, YANG Zhenguo. Confidence-guided Prompt Learning for Multimodal Aspect-level Sentiment Analysis [J]. Computer Science, 2025, 52(7): 241-247. |
| [9] | ZHANG Taotao, XIE Jun, QIAO Pingjuan. Specific Emitter Identification Based on Progressive Self-training Open Set Domain Adaptation [J]. Computer Science, 2025, 52(7): 279-286. |
| [10] | CHEN Jinyin, XI Changkun, ZHENG Haibin, GAO Ming, ZHANG Tianxin. Survey of Security Research on Multimodal Large Language Models [J]. Computer Science, 2025, 52(7): 315-341. |
| [11] | LI Bo, MO Xian. Application of Large Language Models in Recommendation System [J]. Computer Science, 2025, 52(6A): 240400097-7. |
| [12] | HU Caishun. Study on Named Entity Recognition Algorithms in Audit Domain Based on Large LanguageModels [J]. Computer Science, 2025, 52(6A): 240700190-4. |
| [13] | YE Jiale, PU Yuanyuan, ZHAO Zhengpeng, FENG Jue, ZHOU Lianmin, GU Jinjing. Multi-view CLIP and Hybrid Contrastive Learning for Multimodal Image-Text Sentiment Analysis [J]. Computer Science, 2025, 52(6A): 240700060-7. |
| [14] | FU Shufan, WANG Zhongqing, JIANG Xiaotong. Zero-shot Stance Detection in Chinese by Fusion of Emotion Lexicon and Graph ContrastiveLearning [J]. Computer Science, 2025, 52(6A): 240500051-7. |
| [15] | LI Jianghui, DING Haiyan, LI Weihua. Prediction of Influenza A Antigenicity Based on Few-shot Contrastive Learning [J]. Computer Science, 2025, 52(6A): 240800053-6. |
|
||