Computer Science ›› 2025, Vol. 52 ›› Issue (12): 133-140.doi: 10.11896/jsjkx.241200212
• Computer Graphics & Multimedia • Previous Articles Next Articles
HONG Mingjun, JI Qingge
CLC Number:
| [1]HELBING D,MOLNAR P.Social Force Model for Pedestrian Dynamics[J].Physical Review E,1995,51(5):4282-4286. [2]ALAHI A,GOEL K,RAMANATHAN V,et al.Social LSTM:human trajectory prediction in crowded spaces[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Re-cognition.IEEE,2016:961-971. [3]MOHAMED A,QIAN K,ELHOSEINY M,et al.Social-STGCNN:A Social Spatio-Temporal Graph Convolutional Neural Network for Human Trajectory Prediction[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.IEEE,2020:14412-14420. [4]SHI L,WANG L,LONG C,et al.SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory Prediction[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.IEEE,2021:8994-9003. [5]SADEGHIAN A,KOSARAJU V,SADEGHIAN A,et al.So-Phie:An Attentive GAN for Predicting Paths Compliant to Social and Physical Constraints[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition.IEEE,2019:1349-1358. [6]MANGALAM K,AN Y,GIRASE H,et al.From Goals,Waypoints & Paths to Long Term Human Trajectory Forecasting[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision.IEEE,2021:15213-15222. [7]CHEN H,GI Q.Scene-constrained spatial-temporal graph con-volutional network for pedestrian trajectory prediction[J].Journal of Image and Graphics,2023,28(10):3163-3175. [8]ZHANG P,OUYANG W,ZHANG P,et al.SR-LSTM:StateRefinement for LSTM Towards Pedestrian Trajectory Prediction[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.IEEE,2019:12085-12094. [9]LIAN J,REN W,LI L,et al.PTP-STGCN:Pedestrian Trajectory Prediction Based on a Spatio-temporal Graph Convolutional Neural Network[J].Applied Intelligence,2023,53:2862-2878. [10]KOSARAJU V,SADEGHIAN A,MARTÍN-MARTÍN R,et al.Social-BiGAT:multimodal trajectory forecasting using Bicycle-GAN and graph attention networks[J].arXiv:1907.03395,2019. [11]KIPF T N,WELLING M.Semi-Supervised Classification withGraph Convolutional Networks [J].arXiv:1609.02907,2016. [12]CHEN W,SANG H,WANG J,et al.STIGCN:spatial-temporal interaction-aware graph convolution network for pedestrian tra-jectory prediction[J].The Journal of Supercomputing,2024,80(8):10695-10719. [13]HUANG R,XUE H,PAGNUCCO M,et al.Multimodal Trajectory Prediction:A Survey[J].arXiv:2302.10463,2023. [14]GUPTA A,JOHNSON J,FEI-FEI L,et al.Social GAN:Socially Acceptable Trajectories with Generative Adversarial Networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:2255-2264. [15]GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Ge-nerative Adversarial Nets[EB/OL].https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf. [16]YUE J,MANOCHA D,WANG H.Human Trajectory Prediction via Neural Social Physics[C]//European Conference on Computer Vision.Cham:Springer:2022:376-394. [17]XU P,HAYET J B,KARAMOUZAS I.SocialVAE:HumanTrajectory Prediction using Timewise Latents[C]//Proceedings of European Conference on Computer Vision.Cham:Springer,2022:511-528. [18]ZHOU H,YANG X,REN D,et al.CSIR:Cascaded SlidingCVAEs With Iterative Socially-Aware Rethinking for Trajectory Prediction[J].IEEE Transactions on Intelligent Transportation Systems,2023(12):24. [19]XIANG W,YIN H,WANG H,et al.SocialCVAE:Predicting Pedestrian Trajectory via Interaction Conditioned Latents[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2024:6216-6224. [20]MANH H,ALAGHBAND G.Scene-LSTM:A Model for Human Trajectory Prediction.[J].arXiv:1808.04018,2018. [21]VASWANI A,SHAZEER N,PARMAR N,et al.Attention Is All You Need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.2017:6000-6010. [22]KIM T,KIM J,TAE Y,et al.Reversible Instance Normalization for Accurate Time-Series Forecasting against Distribution Shift[EB/OL].https://openreview.net/pdf?id=cGDAkQo1C0p. [23]PELLEGRINI S,ESS A,GOOL L V.Improving Data Association by Joint Modeling of Pedestrian Trajectories and Groupings[C]//Proceedings of the 11th European Conference on Compu-ter Vision.Springer,2010:452-465. [24]LERNER A,CHRYSANTHOU Y,LISCHINSKI D.Crowds by Example[J].Computer Graphics Forum,2007,26(3):655-664. [25]HUANG Y,BI H,LI Z,et al.STGAT:Modeling Spatial-Temporal Interactions for Human Trajectory Prediction[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:6272-6281. [26]YU C,MA X,REN J,et al.Spatio-Temporal Graph Transfor-mer Networks for Pedestrian Trajectory Prediction[C]//Procee-dings of Computer Vision-ECCV:16th European Conference.Cham:Springer,2020:507-523. [27]CHEN G,LI J,LU J,et al.Human Trajectory Prediction viaCounterfactual Analysis[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:9824-9833. |
| [1] | DENG Jiayan, TIAN Shirui, LIU Xiangli, OUYANG Hongwei, JIAO Yunjia, DUAN Mingxing. Trajectory Prediction Method Based on Multi-stage Pedestrian Feature Mining [J]. Computer Science, 2025, 52(9): 241-248. |
| [2] | PENG Jiao, HE Yue, SHANG Xiaoran, HU Saier, ZHANG Bo, CHANG Yongjuan, OU Zhonghong, LU Yanyan, JIANG dan, LIU Yaduo. Text-Dynamic Image Cross-modal Retrieval Algorithm Based on Progressive Prototype Matching [J]. Computer Science, 2025, 52(9): 276-281. |
| [3] | GAO Long, LI Yang, WANG Suge. Sentiment Classification Method Based on Stepwise Cooperative Fusion Representation [J]. Computer Science, 2025, 52(9): 313-319. |
| [4] | LIU Jian, YAO Renyuan, GAO Nan, LIANG Ronghua, CHEN Peng. VSRI:Visual Semantic Relational Interactor for Image Caption [J]. Computer Science, 2025, 52(8): 222-231. |
| [5] | LIU Yajun, JI Qingge. Pedestrian Trajectory Prediction Based on Motion Patterns and Time-Frequency Domain Fusion [J]. Computer Science, 2025, 52(7): 92-102. |
| [6] | LIU Chengzhuang, ZHAI Sulan, LIU Haiqing, WANG Kunpeng. Weakly-aligned RGBT Salient Object Detection Based on Multi-modal Feature Alignment [J]. Computer Science, 2025, 52(7): 142-150. |
| [7] | ZHUANG Jianjun, WAN Li. SCF U2-Net:Lightweight U2-Net Improved Method for Breast Ultrasound Lesion SegmentationCombined with Fuzzy Logic [J]. Computer Science, 2025, 52(7): 161-169. |
| [8] | ZHENG Cheng, YANG Nan. Aspect-based Sentiment Analysis Based on Syntax,Semantics and Affective Knowledge [J]. Computer Science, 2025, 52(7): 218-225. |
| [9] | WANG Youkang, CHENG Chunling. Multimodal Sentiment Analysis Model Based on Cross-modal Unidirectional Weighting [J]. Computer Science, 2025, 52(7): 226-232. |
| [10] | KONG Yinling, WANG Zhongqing, WANG Hongling. Study on Opinion Summarization Incorporating Evaluation Object Information [J]. Computer Science, 2025, 52(7): 233-240. |
| [11] | ZENG Fanyun, LIAN Hechun, FENG Shanshan, WANG Qingmei. Material SEM Image Retrieval Method Based on Multi-scale Features and Enhanced HybridAttention Mechanism [J]. Computer Science, 2025, 52(6A): 240800014-7. |
| [12] | HOU Zhexiao, LI Bicheng, CAI Bingyan, XU Yifei. High Quality Image Generation Method Based on Improved Diffusion Model [J]. Computer Science, 2025, 52(6A): 240500094-9. |
| [13] | DING Xuxing, ZHOU Xueding, QIAN Qiang, REN Yueyue, FENG Youhong. High-precision and Real-time Detection Algorithm for Photovoltaic Glass Edge Defects Based onFeature Reuse and Cheap Operation [J]. Computer Science, 2025, 52(6A): 240400146-10. |
| [14] | WANG Rong , ZOU Shuping, HAO Pengfei, GUO Jiawei, SHU Peng. Sand Dust Image Enhancement Method Based on Multi-cascaded Attention Interaction [J]. Computer Science, 2025, 52(6A): 240800048-7. |
| [15] | WANG Baohui, GAO Zhan, XU Lin, TAN Yingjie. Research and Implementation of Mine Gas Concentration Prediction Algorithm Based on Deep Learning [J]. Computer Science, 2025, 52(6A): 240400188-7. |
|
||