Computer Science ›› 2025, Vol. 52 ›› Issue (12): 189-199.doi: 10.11896/jsjkx.250100082
• Computer Graphics & Multimedia • Previous Articles Next Articles
WU Ying1, YE Hailiang1, CAO Feilong2
CLC Number:
| [1]SUN S,LIU J,LI W.Spatial Invariant Tensor Self-Representation Model for Hyperspectral Anomaly Detection [J].IEEE Transactions on Cybernetics,2024,54(5):3120-3131. [2]LYU Z Y,ZHANG M,SUN W W,et al.Spatial-Contextual Information Utilization Framework for Land Cover Change Detection with Hyperspectral Remote Sensed Images [J].IEEE Transactions on Geoscience and Remote Sensing,2023,61:4411911. [3]BEGLIOMINI F N,BARBOSA C C F,MARTINS V S,et al.Machine Learning for Cyanobacteria Mapping on Tropical Urban Reservoirs Using PRISMA Hyperspectral Data [J].ISPRS Journal of Photogrammetry and Remote Sensing,2023,204:378-396. [4]ZHUANG L,NG M K.FastHyMix:Fast and Parameter-FreeHyperspectral Image Mixed Noise Removal [J].IEEE Transactions on Neural Networks and Learning Systems,2023,34(8):4702-4716. [5]ZHANG Q,ZHENG Y M,YUAN Q Q,et al.HyperspectralImage Denoising:From Model-Driven,Data-Driven,to Model-Data-Driven [J].IEEE Transactions on Neural Networks and Learning Systems,2024,35(10):13143-13163. [6]CHEN Y R,ZHANG H,WANG Y N,et al.Flex-DLD:Deep Low-Rank Decomposition Model with Flexible Priors for Hyperspectral Image Denoising and Restoration [J].IEEE Transactions on Image Processing,2024,33:1211-1226. [7]ZHENG J W,HUANG J J,QIN M J,et al.Hyperspectral Image Denoising Based on Non-Local Similarity and Weighted-Truncated Nuclearnorm [J].Computer Science,2021,48(9):160-167. [8]HE W,YAO Q M,LI C,et al.Non-Local Meets Global:An Ite-rative Paradigm for Hyperspectral Image Restoration [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,44(4):2089-2107. [9]ZHANG L H,YE J.Hyperspectral Image Denoising Based onGroup Sparse and Constraint Smooth Rank Approximation [J].Computer Science,2023,50(6):209-215. [10]SU X,ZHANG Z,YANG F.Fast Hyperspectral Image Denoi-sing and Destriping Method Based on Graph Laplacian Regularization [J].IEEE Transactions on Geoscience Remote Sensing,2023,61:5511214. [11]SI W N,YE J,JIANG B.Hyperspectral Image Denoising Combining Group Sparse and Representative Coefficient Bidirectional Spatial Spectral Total Variation [J].Computer Science,2024,51(12):199-208. [12]ZHA Z Y,WEN B H,YUAN X,et al.Nonlocal StructuredSparsity Regularization Modeling for Hyperspectral Image Denoising [J].IEEE Transactions on Geoscience and Remote Sensing,2023,61:5510316. [13]YE H L,LI H,YANG B,et al.A Novel Rank Approximation Method for Mixture Noise Removal of Hyperspectral Images [J].IEEE Transactions on Geoscience and Remote Sensing,2019,57(7):4457-4469. [14]ZHANG F,ZHANG K,WAN W B,et al.3D Geometrical Total Variation Regularized Low-Rank Matrix Factorization for Hyperspectral Image Denoising [J].Signal Processing,2023,207:108942. [15]XIE W Y,LI Y S.Hyperspectral Imagery Denoising by Deep Learning with Trainable Nonlinearity Function [J].IEEE Geoscience and Remote Sensing Letters,2017,14(11):1963-1967. [16]YUAN Q Q,ZHANG Q,LI J,et al.Hyperspectral Image Denoising Employing a Spatial-Spectral Deep Residual Convolutional Neural Network [J].IEEE Transactions on Geoscience and Remote Sensing,2019,57(2):1205-1218. [17]DONG W S,WANG H,WU F F,et al.Deep Spatial-SpectralRepresentation Learning for Hyperspectral Image Denoising [J].IEEE Transactions on Computational Imaging,2019,5(4):635-648. [18]MA H W,LIU G C,YUAN Y.Enhanced Non-Local Cascading Network with Attention Mechanism for Hyperspectral Image Denoising [C]//Proceedings of the IEEE International Confe-rence on Acoustics,Speech and Signal Processing.IEEE,2020:2448-2452. [19]KAN Z W,LI S H,HOU M Z,et al.Attention-Based Octave Network for Hyperspectral Image Denoising [J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2022,15:1089-1102. [20]TORUN O,YUKSEL S E,ERDEM E,et al.HyperspectralImage Denoising via Self-Modulating Convolutional Neural Networks [J].Signal Processing,2024,214:109248. [21]PAN E T,MA Y,MEI X G,et al.Hyperspectral Image Denoi-sing via Spectral Noise Distribution Bootstrap [J].Pattern Re-cognition,2023,142:109699. [22]VASWANI A,SHAZEER N,PARMAR N,et al.Attention Is All You Need [C]//Advances in Neural Information Processing Systems.MIT,2017:5998-6008. [23]LI M Y,FU Y,ZHANG Y L.Spatial-Spectral Transformer for Hyperspectral Image Denoising [C]//Proceedings of the AAAI Conference on Artificial Intelligence.AAAI,2023:1368-1376. [24]LAI Z Q,YAN C G,FU Y.Hybrid Spectral Denoising Transformer with Guided Attention [C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.IEEE,2023:13065-13075. [25]ZHANG Q,YUAN Q Q,LI J,et al.Hybrid Noise Removal in Hyperspectral Imagery with a Spatial-Spectral Gradient Network [J].IEEE Transactions on Geoscience and Remote Sen-sing,2019,57(10):7317-7329. [26]WANG M Y,HE W,ZHANG S H Y.A Spatial-Spectral Transformer Network with Total Variation Loss for Hyperspectral Image Denoising [J].IEEE Geoscience and Remote Sensing Letters,2023,20:5503105. [27]LI M,ZHANG L,CUI L X,et al.BLoG:Bootstrapped Graph Representation Learning with Local and Global Regularization for Recommendation [J].Pattern Recognition,2023,144:109874. [28]JIANG Q T,YE H L,YANG B,et al.Label-Decoupled Medical Image Segmentation with Spatial-Channel Graph Convolution and Dual Attention Enhancement [J].IEEE Journal of Biome-dical and Health Informatics,2024,28(5):2830-2841. [29]DONG Y N,LIU Q W,DU B,et al.Weighted Feature Fusion of Convolutional Neural Network and Graph Attention Network for Hyperspectral Image Classification [J].IEEE Transactions on Image Processing,2022,31:1559-1572. [30]YANG F,CHEN X,ZHANG Z,et al.Denoising and Destriping Hyperspectral Images Using Double Graph Laplacian Regularizers [J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2023,16:10406-10419. [31]WANG P Q,CHEN P F,YUAN Y,et al.Understanding Convolution for Semantic Segmentation [C]//Proceedings of the IEEE Winter Conference on Applications of Computer Vision.IEEE,2018:1451-1460. [32]ACHANTA R,SHAJI A,SMITH K,et al.SLIC SuperpixelsCompared to State-of-the-Art Superpixel Methods [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(11):2274-2282. [33]CHEN Y P,DAI X Y,LIU M C,et al.Dynamic Convolution:Attention over Convolution Kernels [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.IEEE,2020:11030-11039. [34]WOO S,PARK J,LEE J Y,et al.CBAM:Convolutional Block Attention Module [C]//Proceedings of the European Confe-rence on Computer Vision.Springer,2018:3-19. [35]VERMA S,SHARMA A,SHESHADRI R,et al.GraphFill:Deep Image Inpainting Using Graphs [C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.IEEE,2024:4996-5006. [36]JAMPANI V,SUN D,LIU M Y,et al.Superpixel SamplingNetworks [C]//Proceedings of the European Conference on Computer Vision.Springer,2018:352-368. [37]GLOROT X,BENGIO Y.Understanding the Difficulty of Trai-ning Deep Feedforward Neural Networks [C]//Proceedings of the International Conference on Artificial Intelligence and Statistics.2010:249-256. [38]KINGMA D P,BA L J.Adam:A Method for Stochastic Optimization [C]//International Conference on Learning Representations.San Diego,USA:ArXiv,2015. [39]XIONG F C,ZHOU J,ZHAO Q L,et al.MAC-Net:Model-Aided Nonlocal Neural Network for Hyperspectral Image Denoising [J].IEEE Transactions on Geoscience and Remote Sensing,2022,60:5519414. [40]ZHU X,MILANFAR P.Automatic Parameter Selection for Denoising Algorithms Using a No-Reference Measure of Image Content [J].IEEE Transactions on Image Processing,2010,19(12):3116-3132. |
| [1] | YIN Shi, SHI Zhenyang, WU Menglin, CAI Jinyan, YU De. Deep Learning-based Kidney Segmentation in Ultrasound Imaging:Current Trends and Challenges [J]. Computer Science, 2025, 52(9): 16-24. |
| [2] | ZENG Lili, XIA Jianan, LI Shaowen, JING Maike, ZHAO Huihui, ZHOU Xuezhong. M2T-Net:Cross-task Transfer Learning Tongue Diagnosis Method Based on Multi-source Data [J]. Computer Science, 2025, 52(9): 47-53. |
| [3] | LI Yaru, WANG Qianqian, CHE Chao, ZHU Deheng. Graph-based Compound-Protein Interaction Prediction with Drug Substructures and Protein 3D Information [J]. Computer Science, 2025, 52(9): 71-79. |
| [4] | LUO Chi, LU Lingyun, LIU Fei. Partial Differential Equation Solving Method Based on Locally Enhanced Fourier NeuralOperators [J]. Computer Science, 2025, 52(9): 144-151. |
| [5] | LIU Leyuan, CHEN Gege, WU Wei, WANG Yong, ZHOU Fan. Survey of Data Classification and Grading Studies [J]. Computer Science, 2025, 52(9): 195-211. |
| [6] | LIU Wei, XU Yong, FANG Juan, LI Cheng, ZHU Yujun, FANG Qun, HE Xin. Multimodal Air-writing Gesture Recognition Based on Radar-Vision Fusion [J]. Computer Science, 2025, 52(9): 259-268. |
| [7] | LIU Zhengyu, ZHANG Fan, QI Xiaofeng, GAO Yanzhao, SONG Yijing, FAN Wang. Review of Research on Deep Learning Compiler [J]. Computer Science, 2025, 52(8): 29-44. |
| [8] | TANG Boyuan, LI Qi. Review on Application of Spatial-Temporal Graph Neural Network in PM2.5 ConcentrationForecasting [J]. Computer Science, 2025, 52(8): 71-85. |
| [9] | GUO Husheng, ZHANG Xufei, SUN Yujie, WANG Wenjian. Continuously Evolution Streaming Graph Neural Network [J]. Computer Science, 2025, 52(8): 118-126. |
| [10] | LUO Xuyang, TAN Zhiyi. Knowledge-aware Graph Refinement Network for Recommendation [J]. Computer Science, 2025, 52(7): 103-109. |
| [11] | HAO Jiahui, WAN Yuan, ZHANG Yuhang. Research on Node Learning of Graph Neural Networks Fusing Positional and StructuralInformation [J]. Computer Science, 2025, 52(7): 110-118. |
| [12] | JIANG Kun, ZHAO Zhengpeng, PU Yuanyuan, HUANG Jian, GU Jinjing, XU Dan. Cross-modal Hypergraph Optimisation Learning for Multimodal Sentiment Analysis [J]. Computer Science, 2025, 52(7): 210-217. |
| [13] | ZHENG Cheng, YANG Nan. Aspect-based Sentiment Analysis Based on Syntax,Semantics and Affective Knowledge [J]. Computer Science, 2025, 52(7): 218-225. |
| [14] | ZHOU Lei, SHI Huaifeng, YANG Kai, WANG Rui, LIU Chaofan. Intelligent Prediction of Network Traffic Based on Large Language Model [J]. Computer Science, 2025, 52(6A): 241100058-7. |
| [15] | GUAN Xin, YANG Xueyong, YANG Xiaolin, MENG Xiangfu. Tumor Mutation Prediction Model of Lung Adenocarcinoma Based on Pathological [J]. Computer Science, 2025, 52(6A): 240700010-8. |
|
||