Computer Science ›› 2025, Vol. 52 ›› Issue (10): 60-69.doi: 10.11896/jsjkx.250800009
• Digital Intelligence Enabling FinTech Frontiers • Previous Articles Next Articles
XU Xin1, ZHU Hongbin2, CHEN Jie2, LI Qingwen3, ZHANG Xiaorong1, LYU Zhihui2
CLC Number:
[1]CHEN Z,VAN KHOA L D,TEOH E N,et al.Machine learning techniques for anti-money laundering(AML) solutions in suspicious transaction detection:A review[J].Knowledge and Information Systems,2018,57:245-285. [2]NICHOLLS J,KUPPA A,LE-KHAC N A.Financial cyber-crime:A comprehensive survey of deep learning approaches to tackle the evolving financial crime landscape[J].IEEE Access,2021,9:163965-163986. [3]ZHANG Y,TRUBEY P.Machine learning and samplingscheme:An empirical study of money laundering detection[J].Computational Economics,2019,54(3):1043-1063. [4]JULLUM M,LØLAND A,HUSEBY R B,et al.Detecting money laundering transactions with machine learning[J].Journal of Money Laundering Control,2020,23(1):173-186. [5]QIN Z P,ZHOU Y T,LI Z.Bank transaction fraud detection method based on graph neural network[J].Computer Science,2024,51(S2):921-928. [6]LIU X,WANG X G.Probabilistic graphical model based ap-proach for bank telecommunication fraud detection[J].Compu-ter Science,2018,45(7):122-128,134. [7]CHENG D,YE Y,XIANG S,et al.Anti-money laundering by group-aware deep graph learning[J].IEEE Transactions on Knowledge and Data Engineering,2023,35(12):12444-12457. [8]LIANG Y,WU W,LIANG R,et al.A plug-and-play data-driven approach for anti-money laundering in bitcoin[J].Expert Systems with Applications,2025,266:126072. [9]LORENZ J,SILVA M I,APARÍCIO D,et al.Machine learning methods to detect money laundering in the bitcoin blockchain in the presence of label scarcity[C]//Proceedings of the First ACM International Conference on AI in Finance.2020:1-8. [10]LIU L,LI X,LAN T,et al.A survey on anti-money laundering techniques in blockchain systems[J].Strategic Study of Chinese Academy of Engineering,2025,27(2):287-303. [11]LIU K Y,YU T T.An improved support-vector network model for anti-money laundering[C]//2011 Fifth International Conference on Management of E-Commerce and E-Go-vernment.IEEE,2011:193-196. [12]BAKRY A N,ALSHARKAWY A S,FARAG M S,et al.Combating financial crimes with unsupervised learning techniques:Clustering and dimensionality reduction for anti-Money Laundering[J].arXiv:2403.00777,2024. [13]TATULLI M P,PALADINI T,D'ONGHIA M,et al.HAM-LET:A transformer based approach for money laundering detection[C]//International Symposium on Cyber Security,Cryptology,and Machine Learning.Springer,2023:234-250. [14]JENSEN R I T,IOSIFIDIS A.Qualifying and raising anti-money laundering alarms with deep learning[J].Expert Systems with Applications,2023,214:119037. [15]CARDOSO M,SALEIRO P,BIZARRO P.Laundrograph:Self-supervised graph representation learning for anti-money laundering[C]//Proceedings of the Third ACM International Confe-rence on AI in Finance.2022:130-138. [16]EDDIN A N,BONO J,APARÍCIO D,el al.Anti-money laundering alert optimization using machine learning with graphs[J].arXiv:2112.07508,2021. [17]LI X,CHEN L.Graph anomaly detection with domain-Agnostic pre-training and few-shot adaptation[C]//2024 IEEE 40th International Conference on Data Engineering(ICDE).IEEE,2024:2667-2680. [18]WEBER M,DOMENICONI G,CHEN J,et al.Anti-money laundering in bitcoin:Experimenting with graph convolutional networks for financial forensics[J].arXiv:1908.02591,2019. [19]SCHOTT P A.Reference guide to anti-money laundering and combating the financing of terrorism[M].Washington,DC:World Bank Publications,2006. [20]FORCE F A T.Risk-based approach guidance for the banking sector[R/OL].Paris:FATF,2014:48.https://www.fatf-gafi.org/. [21]VAN DUYNE P C,SOUDIJN M R.Crime-money in the financial system-What we fear and what we know[M]//Transna-tional Criminology Manual:Volume 2.Nijmegen:Wolf Legal Publishers,2010. [22]HEIDARINIA N,HAROUNABADI A,SADEGHZADEH M.An intelligent anti-money laundering method for detecting risky users in the banking systems[J].International Journal of Computer Applications,2014,97(22):35-39. [23]EL-BANNA M M,KHAFAGY M H,EL KADI H M.Smurfdetector:a detection technique of criminal entities involved in money laundering[C]//2020 International Conference on Innovative Trends in Communication and Computer Engineering(ITCE).2020:64-71. [24]CAI T,LUO S,XU K,et al.Graphnorm:A principled approach to accelerating graph neural network training[C]//International Conference on Machine Learning.2021:1204-1215. [25]BRODY S,ALON U,YAHAV E.How attentive are graph attention networks?[J].arXiv:2105.14491,2021. [26]HAMILTON W,YING Z,LESKOVEC J.Inductive representation learning on large graphs[C]//Proceedings of the 31st International Confernce on Neural Information Processing Systems.2017:1025-1035. [27]HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [28]XU K,LI C,TIAN Y,et al.Representation learning on graphs with jumping knowledge networks[C]//International Confe-rence on Machine Learning.2018:5453-5462. [29]CORTES C,VAPNIK V.Support-vector networks[J].Machine Learning,1995,20:273-297. [30]FRIEDMAN J H.Greedy function approximation:a gradientboosting machine[J].Annals of Statistics,2001,29(5):1189-1232. [31]CHEN T,GUESTRIN C.Xgboost:A scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2016:785-794. [32]HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural Computation,1997,9(8):1735-1780. [33]VELICKOVIC P,CUCURULL G,CASANOVA A,et al.Graph attention networks[J].Stat,2017,1050(20):10-48550. [34]HU Z,DONG Y,WANG K,et al.Heterogeneous graph transformer[C]//Proceedings of the Web Conference.2020:2704-2710. [35]SCHLICHTKRULL M,KIPF T N,BLOEM P,et al.Modeling relational data with graph convolutional networks[C]//European Semantic Web Conference.2018:593-607. [36]FU X,ZHANG J,MENG Z,et al.Magnn:Metapath aggregated graph neural network for heterogeneous graph embedding[C]//Proceedings of the Web Conference.2020:2331-2341. |
[1] | LU Xueqin, XIE Xicheng, TANG Yan, CHEN Shikun, LIU Yangguang. Integration of Machine Learning Prediction and Water Wave Optimization for Online Customer Service Representatives Scheduling in Bank Contact Centers [J]. Computer Science, 2025, 52(10): 33-49. |
[2] | CHEN Ping, LIU Kehan, LIANG Zhengyou, HU Qixing, ZHANG Yuanpeng. Sparsity Cooperated Correntropy Based Robust Principal Component Analysis [J]. Computer Science, 2025, 52(10): 134-143. |
[3] | HUANG Weiye, CHEN Xiliang, LAI Jun. Review of Research on Agent Training Methods Toward Human-Agent Collaboration [J]. Computer Science, 2025, 52(10): 176-189. |
[4] | HU Libin, ZHANG Yunfeng, LIU Peide. Synthetic Oversampling Method Based Noiseless Gradient Distribution [J]. Computer Science, 2025, 52(9): 220-231. |
[5] | ZHU Rui, YE Yaqin, LI Shengwen, TANG Zijian, XIAO Yue. Dynamic Community Detection with Hierarchical Modularity Optimization [J]. Computer Science, 2025, 52(8): 127-135. |
[6] | JIANG Rui, FAN Shuwen, WANG Xiaoming, XU Youyun. Clustering Algorithm Based on Improved SOM Model [J]. Computer Science, 2025, 52(8): 162-170. |
[7] | ZENG Xinran, LI Tianrui, LI Chongshou. Active Learning for Point Cloud Semantic Segmentation Based on Dynamic Balance and DistanceSuppression [J]. Computer Science, 2025, 52(8): 180-187. |
[8] | FU Wenhao, GE Liyong, WANG Wen, ZHANG Chun. Multi-UAV Path Planning Algorithm Based on Improved Dueling-DQN [J]. Computer Science, 2025, 52(8): 326-334. |
[9] | LIU Chengzhuang, ZHAI Sulan, LIU Haiqing, WANG Kunpeng. Weakly-aligned RGBT Salient Object Detection Based on Multi-modal Feature Alignment [J]. Computer Science, 2025, 52(7): 142-150. |
[10] | LI Jiawei , DENG Yuandan, CHEN Bo. Domain UML Model Automatic Construction Based on Fine-tuning Qwen2 [J]. Computer Science, 2025, 52(6A): 240900155-4. |
[11] | CHEN Xianglong, LI Haijun. LST-ARBunet:An Improved Deep Learning Algorithm for Nodule Segmentation in Lung CT Images [J]. Computer Science, 2025, 52(6A): 240600020-10. |
[12] | HUANG Ao, LI Min, ZENG Xiangguang, PAN Yunwei, ZHANG Jiaheng, PENG Bei. Adaptive Hybrid Genetic Algorithm Based on PPO for Solving Traveling Salesman Problem [J]. Computer Science, 2025, 52(6A): 240600096-6. |
[13] | SUN Yongqian, TANG Shouguo. Prediction of Moisture Content and Temperature of Tobacco Leaf Re-curing Outlet Based onImproved DBO-BP Neural Network [J]. Computer Science, 2025, 52(6A): 240900069-7. |
[14] | GAO Xinjun, ZHANG Meixin, ZHU Li. Study on Short-time Passenger Flow Data Generation and Prediction Method for RailTransportation [J]. Computer Science, 2025, 52(6A): 240600017-5. |
[15] | DU Yuanhua, CHEN Pan, ZHOU Nan, SHI Kaibo, CHEN Eryang, ZHANG Yuanpeng. Correntropy Based Multi-view Low-rank Matrix Factorization and Constraint Graph Learning for Multi-view Data Clustering [J]. Computer Science, 2025, 52(6A): 240900131-10. |
|