Computer Science ›› 2022, Vol. 49 ›› Issue (8): 157-164.doi: 10.11896/jsjkx.210600240
• Computer Graphics & Multimedia • Previous Articles Next Articles
WANG Can1,2, LIU Yong-jian1, XIE Qing1,2, MA Yan-chun1
CLC Number:
[1]CHEN K Q,ZHU Z L,DENG X M,et al.Deep Learning for Multi-Scale Object Detection:A survey[J].Journal of Software,2021,32(4):1201-1227. [2]LI S P,LI C L,HAN J B,et al.Application of Binocular Vision Single Step Multi-target Detection Method for Robot Grasping[J].Journal of Chongqing Technology and Business University(Natural Science Edition),2021,38(5):68-74. [3]XUAN D D,WANG J,WANG Z.Salient target detection based on high-level priori semantics [J].Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition),2020,32(2):304-312. [4]TIAN Z,SHEN C,CHEN H,et al.FCOS:Fully Convolutional One-Stage Object Detection [C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:9626-9635. [5]DUAN K,BAI S,XIE L,et al.CenterNet:Keypoint Triplets for Object Detection [C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:6569-6578. [6]CARION N,MASSA F,SYNNAEVE G,et al.End-to-End Object Detection with Transformers [C]//European Conference on Computer Vision.Cham:Springer,2020:213-229. [7]ZHANG S,CHI C,YAO Y,et al.Bridging the Gap Between Anchor-Based and Anchor-Free Detection via Adaptive Training Sample Selection [C]//Proceedings of the IEEE/CVF Confe-rence on Computer Vision and Pattern Recognition.2020:9756-9765. [8]LIN T Y,GOYAL P,GIRSHICK R,et al.Focal Loss for Dense Object Detection [C]//Proceedings of the IEEE International Conference on Computer Vision.2017:2999-3007. [9]TIAN Z,SHEN C,CHEN H,et al.FCOS:A Simple and Strong Anchor-Free Object Detector[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,44(4):1922-1933. [10]KONG T,SUN F,LIU H,et al.FoveaBox:Beyound Anchor-Based Object Detection [J].IEEE Transactions on Image Processing,2020,29:7389-7398. [11]ZHU C,CHEN F,SHEN Z,et al.Soft Anchor-Point Object Detection[C]//European Conference on Computer Vision.Cham:Springer,2020:91-107. [12]REDMON J,FARHADI A.YOLOv3:An Incremental Improvement [J].arXiv:1804.02767,2018. [13]BOCHKOVSKIY A,WANG C Y,LIAO H Y M.YOLOv4:Optimal Speed and Accuracy of Object Detection [J].arXiv:2004.10934,2020. [14]TAN M,PANG R,LE Q V.EfficientDet:Scalable and Efficient Object Detection [C]//Proceedings of the IEEE/CVFConfe-rence on Computer Vision and Pattern Recognition.2020:10778-10787. [15]CAI Z,VASCONCELOS N.Cascade R-CNN:Delving Into High Quality Object Detection [C]//Proceedings of the IEEE Confe-rence on Computer Vision and Pattern Recognition.2018:6154-6162. [16]HE K,GKIOXARI G,DOLLÁR P,et al.Mask R-CNN [C]//Proceedings of the IEEE International Conference on Computer Vision.2017:2980-2988. [17]PANG J,CHEN K,SHI J,et al.Libra R-CNN:Towards Ba-lanced Learning for Object Detection [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:821-830. [18]LAW H,DENG J.CornerNet:Detecting Objects as Paired Keypoints [C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:765-781. [19]ZHANG Z,HE T,ZHANG H,et al.Bag of Freebies for Trai-ning Object Detection Neural Networks [J].arXiv:1902.04103,2019. [20]LI H,WU Z,ZHU C,et al.Learning From Noisy Anchors for One-Stage Object Detection [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:10585-10594. [21]QIAN Q,CHEN L,LI H,et al.DR Loss:Improving Object Detection by Distributional Ranking [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:12161-12169. [22]REN S,HE K,GIRSHICK R,et al.Faster R-CNN:Towards Real-Time Object Detection with Region Proposal Networks [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149. [23]YU J,JIANG Y,WANG Z,et al.UnitBox:An Advanced Object Detection Network [C]//Proceedings of the 24th ACM International Conference on Multimedia.2016:516-520. [24]REZATOFIGHI H,TSOI N,GWAK J Y,et al.Generalized Intersection Over Union:A Metric and a Loss for Bounding Box Regression [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:658-666. [25]ZHENG Z,WANG P,LIU W,et al.Distance-IoU Loss:Faster and Better Learning for Bounding Box Regression [C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:12993-13000. [26]LIU W,ANGUELOV D,ERHAN D,et al.SSD:Single ShotMultiBox Detector [C]//European Conference on Computer Vision.Cham:Springer,2016:21-37. [27]HE K,ZHANG X,REN S,et al.Deep Residual Learning forImage Recognition [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [28]XIE S,GIRSHICK R,DOLLÁR P,et al.Aggregated Residual Transformations for Deep Neural Networks [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:1492-1500. [29]TAN M,LE Q.EfficientNet:Rethinking Model Scaling for Convolutional Neural Networks [C]//International Conference on Machine Learning.PMLR,2019:6105-6114. [30]LIN T Y,DOLLÁR P,GIRSHICK R,et al.Feature Pyramid Networks for Object Detection [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:2117-2125. [31]GHIASI G,LIN T Y,LE Q V.NAS-FPN:Learning Scalable Feature Pyramid Architecture for Object Detection [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:7036-7045. |
[1] | LIU Dong-mei, XU Yang, WU Ze-bin, LIU Qian, SONG Bin, WEI Zhi-hui. Incremental Object Detection Method Based on Border Distance Measurement [J]. Computer Science, 2022, 49(8): 136-142. |
[2] | CHEN Yong-ping, ZHU Jian-qing, XIE Yi, WU Han-xiao, ZENG Huan-qiang. Real-time Helmet Detection Algorithm Based on Circumcircle Radius Difference Loss [J]. Computer Science, 2022, 49(6A): 424-428. |
[3] | CHEN Jia-zhou, ZHAO Yi-bo, XU Yang-hui, MA Ji, JIN Ling-feng, QIN Xu-jia. Small Object Detection in 3D Urban Scenes [J]. Computer Science, 2022, 49(6): 238-244. |
[4] | HU Fu-yuan, WAN Xin-jun, SHEN Ming-fei, XU Jiang-lang, YAO Rui, TAO Zhong-ben. Survey Progress on Image Instance Segmentation Methods of Deep Convolutional Neural Network [J]. Computer Science, 2022, 49(5): 10-24. |
[5] | XU Tao, CHEN Yi-ren, LYU Zong-lei. Study on Reflective Vest Detection for Apron Workers Based on Improved YOLOv3 Algorithm [J]. Computer Science, 2022, 49(4): 239-246. |
[6] | YUAN Lei, LIU Zi-yan, ZHU Ming-cheng, MA Shan-shan, CHEN Lin-zhou-ting. Improved YOLOv3 Remote Sensing Target Detection Based on Improved Dense Connection and Distributional Ranking Loss [J]. Computer Science, 2021, 48(9): 168-173. |
[7] | GONG Hao-tian, ZHANG Meng. Lightweight Anchor-free Object Detection Algorithm Based on Keypoint Detection [J]. Computer Science, 2021, 48(8): 106-110. |
[8] | LI Lin, LIU Xue-liang, ZHAO Ye, JI Ping. Low Light Image Fusion Detection Method Based on Lego Filter and SSD [J]. Computer Science, 2021, 48(7): 213-218. |
[9] | XIN Yuan-xue, SHI Peng-fei, XUE Rui-yang. Moving Object Detection Based on Region Extraction and Improved LBP Features [J]. Computer Science, 2021, 48(7): 233-237. |
[10] | ZHANG Man, LI Jie, ZHU Xin-zhong, SHEN Ji, CHENG Hao-tian. Augmentation Technology of Remote Sensing Dataset Based on Improved DCGAN Algorithm [J]. Computer Science, 2021, 48(6A): 80-84. |
[11] | PAN Ming-yuan, SONG Hui-hui, ZHANG Kai-hua, LIU Qing-shan. Learning Global Guided Progressive Feature Aggregation Lightweight Network for Salient Object Detection [J]. Computer Science, 2021, 48(6): 103-109. |
[12] | ZHANG Shao-qin, DU Sheng-dong, ZHANG Xiao-bo, LI Tian-rui. Social Rumor Detection Method Based on Multimodal Fusion [J]. Computer Science, 2021, 48(5): 117-123. |
[13] | SHI Xian-rang, SONG Ting-lun, TANG De-zhi, DAI Zhen-yong. Novel Deep Learning Algorithm for Monocular Vision:H_SFPN [J]. Computer Science, 2021, 48(4): 130-137. |
[14] | YUAN Xing-xing, WU Qin. Object Detection in Remote Sensing Images Based on Saliency Feature and Angle Information [J]. Computer Science, 2021, 48(4): 174-179. |
[15] | LI Ya-ze, LIU Hong-zhe. Object Detection Based on Neighbour Feature Fusion [J]. Computer Science, 2021, 48(12): 264-268. |
|