Computer Science ›› 2021, Vol. 48 ›› Issue (5): 117-123.doi: 10.11896/jsjkx.200400057
Special Issue: Big Data & Data Scinece
• Database & Big Data & Data Science • Previous Articles Next Articles
ZHANG Shao-qin1, DU Sheng-dong1,2,3, ZHANG Xiao-bo1,2,3, LI Tian-rui1,2,3
CLC Number:
[1]CHEN Y F,LI Z Y,LIANG X,et al.Review on Rumor Detection of Online Social Networks[J].Chinese Journal of Compu-ters,2018,41(7):1648-1677. [2]KARPATHY A,LI F F.Deep Visual-Semantic Alignments for Generating Image Descriptions[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(4):664-676. [3]ANDERSON P,HE X,BUEHLER C,et al.Bottom-Up andTop-Down Attention for Image Captioning and Visual Question Answering[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.ACM,2018:6077-6086. [4]GAO P,JIANG Z,YOU H,et al.Dynamic fusion with intra-and inter-modality attention flow for visual question answering[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.ACM,2019:6632-6641. [5]BALTRUSAITIS T,AHUJA C,MORENCY L P.Multimodal Machine Learning:A Survey and Taxonomy[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2019,41(2):423-443. [6]CASTILLO C,MENDOZA M,POBLETE B.Predicting infor-mation credibility in time-sensitive social media[J].Internet Research,2013,23(5):560-588. [7]ZHAO Z,RESNICK P,MEI Q.Enquiring minds:Early detection of rumors in social media from enquiry posts[C]//Procee-dings of the 24th International Conference on World Wide Web.2015:1395-1405. [8]TSCHIATSCHEK S,SINGLA A,GOMEZ R M,et al.FakeNews Detection in Social Networks via Crowd Signals[C]//Companion of The Web Conference 2018 on The Web Confe-rence 2018.2018:517-524. [9]GUPTA A,LAMBA H,KUMARAGURU P,et al.Fakingsandy:characterizing and identifying fake images on twitter during hurricane sandy[C]//Proceedings of the 22nd International Conference on World Wide Web.ACM,2013:729-736. [10]JIN Z,CAO J,ZHANG Y,et al.Novel visual and statistical ima-ge features for microblogs news verification[J].IEEE Transactions on Multimedia,2017,19(3):598-608. [11]LIU Z,WEI Z H,ZHANG R X.Rumor detection based on con-volutional neural network[J].Journal of Computer Applications,2017(11):21-24,68. [12]LIAO X W,HUANG Z,YANG D D,et al.Rumor detection in social media based on a hierarchical attention network[J].Scientia Sinica Informationis,2018,48(11):1558-1574. [13]MA J,GAO W,WONG K.Rumor detection on twitter withtree-structured recursive neural networks[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics.2018:1980-1989. [14]RUCHANSKY N,SEO S,LIU Y.CSI:A hybrid deep model for fake news detection[C]//Proceedings of the 2017 ACM on Conference on Information and Knowledge Management.ACM,2017:797-806. [15]HOCHREITER S,SCHMIDHUBER J.Long Short-Term Me-mory[J].Neural Computation,1997,9(8):1735-1780. [16]ZHANG J,DONG B,YU P S.Deep Diffusive Neural Network based Fake News Detection from Heterogeneous Social Networks[C]//Proceedings of IEEE International Conference on Big Data.2019:1259-1266. [17]SHU K,WANG S,LIU H.Beyond news contents:The role of social context for fake news detection[C]//Proceedings of the 12th ACM International Conference on Web Search and Data Mining.2019:312-320. [18]LIU Y,WU Y.Early detection of fake news on social media through propagation path classification with recurrent andcon-volutional networks[C]//Proceedings of Thirty-Second AAAI Conference on Artificial Intelligence.2018:354-361. [19]MIKOLOV T,KARAFIAT M,BURGET L,et al.Recurrentneural network based language model[C]//Proceedings of 11th Annual Conference of the International Speech Communication Association.2010:1045-1048. [20]YANG Y,ZHENG L,ZHANG J,et al.TI-CNN:Convolutional Neural Networks for Fake News Detection[J].arXiv:1806.00749,2018. [21]JIN Z,CAO J,HAN G,et al.Multimodal Fusion with Recurrent Neural Networks for Rumor Detection on Microblogs[C]//Proceedings of the 2017 ACM on Multimedia Conference.ACM,2017:795-816. [22]WANG Y,MA F,JIN Z,et al.EANN:Event Adversarial Neural Networks for Multi-Modal Fake News Detection[C]//Procee-dings of The 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.ACM,2018:849-857. [23]SCHUSTER M,PALIWAL K.Bidirectional recurrent neuralnetworks[J].IEEE Transactions on Signal Processing,1997,45(11):2673-2681. [24]KIM Y.Convolutional Neural Networks for Sentence Classification[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing(EMNLP).ACM,2014:1746-1751. [25]GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Computer Society Confe-rence on Computer Vision and Pattern Recognition.ACM 2014:580-587. [26]REN S,HE K,GIRSHICK R,et al.Faster R-CNN:Towards Real-Time Object Detection with Region Proposal Networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017(6):1137-1149. [27]VASWANI A,SHAZEER N,PARMAR N,et al.Attention IsAll You Need[J].Advances in Neural Information Processing Systems,2017(12):5999-6009. [28]GU Y,YANG K,FU S,et al.Hybrid Attention based Multimodal Network for Spoken Language Classification[C]//Procee-dings of the 27th International Conference on Computational Linguistics.ACM,2018:2379-2390. [29]BOIDIDOU C,PAPADOPOULOS S,ZAMPOGLOU M,et al.Detection and visualization of misleading content on Twitter[J].International Journal of Multimedia Information Retrieval,2018,7(1):71-86. [30]SIMONYAN K,ZISSERMAN A.Very Deep Convolutional Networks for Large-Scale Image Recognition[C]//Proceedings of International Conference on Learning Representations.ICLR,2015:1-14. |
[1] | RAO Zhi-shuang, JIA Zhen, ZHANG Fan, LI Tian-rui. Key-Value Relational Memory Networks for Question Answering over Knowledge Graph [J]. Computer Science, 2022, 49(9): 202-207. |
[2] | TANG Ling-tao, WANG Di, ZHANG Lu-fei, LIU Sheng-yun. Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy [J]. Computer Science, 2022, 49(9): 297-305. |
[3] | ZHOU Xu, QIAN Sheng-sheng, LI Zhang-ming, FANG Quan, XU Chang-sheng. Dual Variational Multi-modal Attention Network for Incomplete Social Event Classification [J]. Computer Science, 2022, 49(9): 132-138. |
[4] | XU Yong-xin, ZHAO Jun-feng, WANG Ya-sha, XIE Bing, YANG Kai. Temporal Knowledge Graph Representation Learning [J]. Computer Science, 2022, 49(9): 162-171. |
[5] | WANG Jian, PENG Yu-qi, ZHAO Yu-fei, YANG Jian. Survey of Social Network Public Opinion Information Extraction Based on Deep Learning [J]. Computer Science, 2022, 49(8): 279-293. |
[6] | HAO Zhi-rong, CHEN Long, HUANG Jia-cheng. Class Discriminative Universal Adversarial Attack for Text Classification [J]. Computer Science, 2022, 49(8): 323-329. |
[7] | JIANG Meng-han, LI Shao-mei, ZHENG Hong-hao, ZHANG Jian-peng. Rumor Detection Model Based on Improved Position Embedding [J]. Computer Science, 2022, 49(8): 330-335. |
[8] | LIU Dong-mei, XU Yang, WU Ze-bin, LIU Qian, SONG Bin, WEI Zhi-hui. Incremental Object Detection Method Based on Border Distance Measurement [J]. Computer Science, 2022, 49(8): 136-142. |
[9] | WANG Can, LIU Yong-jian, XIE Qing, MA Yan-chun. Anchor Free Object Detection Algorithm Based on Soft Label and Sample Weight Optimization [J]. Computer Science, 2022, 49(8): 157-164. |
[10] | SUN Qi, JI Gen-lin, ZHANG Jie. Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection [J]. Computer Science, 2022, 49(8): 172-177. |
[11] | HU Yan-yu, ZHAO Long, DONG Xiang-jun. Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification [J]. Computer Science, 2022, 49(7): 73-78. |
[12] | CHENG Cheng, JIANG Ai-lian. Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction [J]. Computer Science, 2022, 49(7): 120-126. |
[13] | HOU Yu-tao, ABULIZI Abudukelimu, ABUDUKELIMU Halidanmu. Advances in Chinese Pre-training Models [J]. Computer Science, 2022, 49(7): 148-163. |
[14] | ZHOU Hui, SHI Hao-chen, TU Yao-feng, HUANG Sheng-jun. Robust Deep Neural Network Learning Based on Active Sampling [J]. Computer Science, 2022, 49(7): 164-169. |
[15] | SU Dan-ning, CAO Gui-tao, WANG Yan-nan, WANG Hong, REN He. Survey of Deep Learning for Radar Emitter Identification Based on Small Sample [J]. Computer Science, 2022, 49(7): 226-235. |
|