Computer Science ›› 2022, Vol. 49 ›› Issue (8): 273-278.doi: 10.11896/jsjkx.210900023
• Artificial Intelligence • Previous Articles Next Articles
LI Zong-min1, ZHANG Yu-peng1, LIU Yu-jie1, LI Hua 2
CLC Number:
[1]GUO Y,WANG H,HU Q,et al.Deep Learning for 3D Point Clouds:A Survey[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,43(12):4338-4364. [2]QI C R,SU H,MO K,et al.Pointnet:Deep learning on point sets for 3d classification and segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:652-660. [3]QI C R,YI L,SU H,et al.PointNet++:deep hierarchical feature learning on point sets in a metric space[EB/OL].https://arxiv.org/pdf/1706.02413.pdf. [4]LI Y,BU R,SUN M,et al.B:PointCNN:Con-volution on X-transformed points[C]//In Conference and Work-shop on Neural Information Processing Systems(NeurIPS).2018:820-830. [5]LI R,LI X,HENG P A,et al.Pointaugment:an au-to-augmentation framework for point cloud classifica-tion[C]//Proceedings of the IEEE/CVF Conference on Com-puter Vision and Pattern Recognition.2020:6378-6387. [6]JIE Z A,GC A,SH A,et al.Graph neural networks:A review of methods and applications[J].AI Open,2020,1:57-81. [7]WANG Y,SUN Y,LIU Z,et al.Dynamic graph cnn for learning on point clouds[J].ACM Transactions On Graphics(tog),2019,38(5):1-12. [8]LIN Z H,HUANG S Y,WANG Y C F.Convolution in the cloud:Learning deformable kernels in 3D graph convolution net-works for point cloud analysis[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:1800-1809. [9]ZHAO H,JIANG L,FU C W,et al.PointWeb:Enhancing local neighborhood features for point cloud processing[C]//CVPR.2019:5565-5573. [10]YANG J,ZHANG Q,NI B,et al.Modeling Point Clouds With Self-Attention and Gumbel Subset Sampling[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).IEEE,2019:3323-3332. [11]CHOY C B,XU D F,GWAK J Y,et al.3D-R2N2:A Unified Approach for Single and Multi-view 3D Object Reconstruction[C]//Proceedings of the European Conference on Computer Vision(ECCV).2016:628-644. [12]MATURANA D,SCHERER S.VoxNet:A 3D Convolutional Neural Network for Real-time Object Recognition[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS).IEEE,2015:922-928. [13]MENG H Y,GAO L,LAI Y K,et al.VV-Net:Voxel VAE Net with Group Convolutions for Point Cloud Segmentation[J].ar-Xiv:1811.04337,2018. [14]ROYNARD X,DESCHAUD J E,GOULETTE F.Classification of Point Cloud Scenes with Multiscale Voxel Deep Network[J].arXiv:1804.03583,2018. [15]YAN Y,MAO Y,LI B.Second:Sparsely embedded convolu-tional detection[J/OL].Sensors,2018:18(10):3337.https://doi.org/10.3390/s18103337. [16]TE G,HU W,ZHENG A,et al.Rgcnn:Regularized graph cnn for point cloud segmentation[C]//Proceedings of the 26th ACM international conference on Multimedia.2018:746-754. [17]ZHANG K,HAO M,WANG J,et al.Linked dynamic graphcnn:Learning on point cloud via linking hierarchical features[J].arXiv:1904.10014,2019. [18]SIMONOVSKY M,KOMODAKIS N.Dynamic edge-conditioned filters in convolutional neural networks on graphs[C]//CVPR.2017:3693-3702. [19]LI G,MÜLLER M,THABET A,et al.DeepGCNs:Can GCNs Go as Deep as CNNs? [C]//ICCV.2019:9267-9276. [20]SHEN Y,FENG C,YANG Y,et al.Mining point cloud localstruc-tures by kernel correlation and graph pooling[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:4548-4557. [21]XU Q,SUN X,WU C Y,et al.Grid-gcn for fast and scalable point cloud learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:5661-5670. [22]HU H,WANG F,LE H.VA-GCN:A Vector Attention Graph Convolution Network for learning on Point Clouds[J/OL].https://arxiv.org/pdf/2106.00227.pdf. [23]HE K,ZHANG X,REN S,et al.Spatial pyramid pooling in deep convolutional networks for visual recognition[J].IEEETran-sactions on Pattern Analysis and Machine Intelligence,2015,37(9):1904-1916. [24]SHILANE P,MIN P,KAZHDAN M,et al.The princeton shape benchmark[C]//Proceedings Shape Modeling Applications,2004.IEEE,2004:167-178. [25]YI L,KIM V G,CEYLAN D,et al.A scalable active framework for region annotation in 3d shape collections[J].ACM Transactions on Graphics(ToG),2016,35(6):1-12. [26]KLOKOV R,LEMPITSKY V.Escape from cells:Deep kd-networks for the recognition of 3d point cloud models[C]//2017 IEEE International Conference on Computer Vision(ICCV).2017:863-872. [27]HAN X F,HE Z Y,CHEN J,et al.Cross-Level Cross-ScaleCross-Attention Network for Point Cloud Representation[EB/OL].https://arxiv.org/pdf/2104.13053.pdf. |
[1] | SONG Jie, LIANG Mei-yu, XUE Zhe, DU Jun-ping, KOU Fei-fei. Scientific Paper Heterogeneous Graph Node Representation Learning Method Based onUnsupervised Clustering Level [J]. Computer Science, 2022, 49(9): 64-69. |
[2] | HUANG Li, ZHU Yan, LI Chun-ping. Author’s Academic Behavior Prediction Based on Heterogeneous Network Representation Learning [J]. Computer Science, 2022, 49(9): 76-82. |
[3] | XU Yong-xin, ZHAO Jun-feng, WANG Ya-sha, XIE Bing, YANG Kai. Temporal Knowledge Graph Representation Learning [J]. Computer Science, 2022, 49(9): 162-171. |
[4] | HUANG Pu, DU Xu-ran, SHEN Yang-yang, YANG Zhang-jing. Face Recognition Based on Locality Regularized Double Linear Reconstruction Representation [J]. Computer Science, 2022, 49(6A): 407-411. |
[5] | JIANG Zong-li, FAN Ke, ZHANG Jin-li. Generative Adversarial Network and Meta-path Based Heterogeneous Network Representation Learning [J]. Computer Science, 2022, 49(1): 133-139. |
[6] | WANG Ying-li, JIANG Cong-cong, FENG Xiao-nian, QIAN Tie-yun. Time Aware Point-of-interest Recommendation [J]. Computer Science, 2021, 48(9): 43-49. |
[7] | ZHAO Jin-long, ZHAO Zhong-ying. Recommendation Algorithm Based on Heterogeneous Information Network Embedding and Attention Neural Network [J]. Computer Science, 2021, 48(8): 72-79. |
[8] | YE Hong-liang, ZHU Wan-ning, HONG Lei. Music Style Transfer Method with Human Voice Based on CQT and Mel-spectrum [J]. Computer Science, 2021, 48(6A): 326-330. |
[9] | YANG Ru-han, DAI Yi-ru, WANG Jian, DONG Jin. Humans-Cyber-Physical Ontology Fusion of Industry Based on Representation Learning [J]. Computer Science, 2021, 48(5): 190-196. |
[10] | QIAN Sheng-sheng, ZHANG Tian-zhu, XU Chang-sheng. Survey of Multimedia Social Events Analysis [J]. Computer Science, 2021, 48(3): 97-112. |
[11] | WANG Xing , KANG Zhao. Smooth Representation-based Semi-supervised Classification [J]. Computer Science, 2021, 48(3): 124-129. |
[12] | LI Xin-chao, LI Pei-feng, ZHU Qiao-ming. Directed Network Representation Method Based on Hierarchical Structure Information [J]. Computer Science, 2021, 48(2): 100-104. |
[13] | WANG Xue-cen, ZHANG Yu, LIU Ying-jie, YU Ge. Evaluation of Quality of Interaction in Online Learning Based on Representation Learning [J]. Computer Science, 2021, 48(2): 207-211. |
[14] | FU Kun, ZHAO Xiao-meng, FU Zi-tong, GAO Jin-hui, MA Hao-ran. Deep Network Representation Learning Method on Incomplete Information Networks [J]. Computer Science, 2021, 48(12): 212-218. |
[15] | KANG Yan, KOU Yong-qi, XIE Si-yu, WANG Fei, ZHANG Lan, WU Zhi-wei, LI Hao. Deep Clustering Model Based on Fusion Variational Graph Attention Self-encoder [J]. Computer Science, 2021, 48(11A): 81-87. |
|