Computer Science ›› 2024, Vol. 51 ›› Issue (6A): 230300223-11.doi: 10.11896/jsjkx.230300223
• Big Data & Data Science • Previous Articles Next Articles
QIAO Hong, XING Hongjie
CLC Number:
[1]KHAN S S,MADDEN M G.A Survey of Recent Trends in One Class Classification[C]//Irish Conference on Artificial Intelligence and Cognitive Science.Springer,Berlin,Heidelberg,2009:188-197. [2]AHMED M,MAHMOOD A N,HU J.A Survey of NetworkAnomaly Detection Techniques[J].Journal of Network and Computer Applications,2016,60:19-31. [3]BERGMANN P,FAUSER M,SATTLEGGER D,et al.MVTec AD-A Comprehensive Real-world Dataset for Unsupervised Anomaly Detection[C]//Proceedings of the IEEE/CVF Confe-rence on Computer Vision and Pattern Recognition.2019:9592-9600. [4]YAO Q,XIAO L,LIU P,et al.Label-free Segmentation of Co-vid-19 Lesions in Lung CT[J].IEEE Transactions on Medical Imaging,2021,40(10):2808-2819. [5]RASHID A N M B,AHMED M,SIKOS L F,et al.Anomaly Detection in Cybersecurity Datasets Via Cooperative Co-Evolution-Based Feature Selection[J].ACM Transactions on Management Information Systems(TMIS),2022,13(3):1-39. [6]ZHOU K,GU Z,LIU W,et al.Multi-Cell Multi-Task Convolutional Neural Networks for Diabetic Retinopathy Grading[C]//2018 40th Annual International Conference of The IEEE Engineering in Medicine and Biology Society(EMBC).IEEE,2018:2724-2727. [7]DHIMAN G,JUNEJA S,VIRIYASITAVAT W,et al.A Novel Machine-Learning-Based Hybrid CNN Model for Tumor Identification in Medical Image Processing[J].Sustainability,2022,14(3):1447. [8]SCHÖLKOPF B,WILLIAMSON R C,SMOLA A,et al.Support Vector Method for Novelty Detection[J].Advances in Neural Information Processing Systems,1999,12. [9]TAX D M J,DUIN R P W.Support Vector Data Description[J].Machine Learning,2004,54(1):45-66. [10]ZONG B,SONG Q,MIN M R,et al.Deep Autoencoding Gauss-ian Mixture Model for Unsupervised Anomaly Detection[C]//International Conference on Learning Representations.2018. [11]AKCAY S,ATAPOUR-ABARGHOUEI A,BRECKON T P.GANomaly:Semi-Supervised AnomalyDetection Via AdversarialTraining[C]//Computer Vision-ACCV 2018:14th Asian Conference on Computer Vision.Springer International Publishing,2019:622-637. [12]BERGMANN P,LWE S,FAUSER M,et al.Im-proving Unsupervised Defect Segmentation by Applying Structural Similarity to Autoencoders[C]//14th International Conference on Computer Vision Theory and Applications.2019. [13]HINTON G,VINYALS O,DEAN J.Distilling the Knowledgein a Neural Network[J].Computer Science,2015,14(7):38-39. [14]BERGMANN P,FAUSER M,SATTLEGGER D,et al.Unin-formed Students:Student-Teacher Anomaly Detection with Discriminative Latent Embeddings[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:4183-4192. [15]SALEHI M,SADJADI N,BASELIZADEH S,et al.Multiresolution Knowledge Distillation for Anomaly Detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:14902-14912. [16]WANG Q,WU B,ZHU P,et al.ECA-Net:Efficient Channel Attention for Deep Convolutional Neural Networks[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).2020:11531-11539. [17]HOFFMANN H.Kernel PCA for Novelty Detection[J].Pattern Recognition,2007,40(3):863-874. [18]TING K M,XU B C,WASHIO T,et al.Isolation Distributional Kernel:A New Tool for Kernel Based Anomaly Detection[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2020:198-206. [19]QU J,DU Q,LI Y,et al.Anomaly Detection in Hyperspectral Imagery Based on Gaussian Mixture Model[J].IEEE Transactions on Geoscience and Remote Sensing,2020,59(11):9504-9517. [20]LI C,GUO L,GAO H,et al.Similarity-Measured Isolation Fo-rest:Anomaly Detection Method for Machine Monitoring Data[J].IEEE Transactions on Instrumentation and Measurement,2021,70:1-12. [21]PENG X,LI H,YUAN F,et al.An Extreme Learning Machine for Unsupervised Online Anomaly Detection in Multivariate Time Series[J].Neurocomputing,2022,501:596-608. [22]PANG J,PU X,LI C.A Hybrid Algorithm Incorporating Vector Quantization and One-Class Support Vector Machine for Industrial Anomaly Detection[J].IEEE Transactions on Industrial Informatics,2022,18(12):8786-8796. [23]RUFF L,VANDERMEULEN R,GOERNITZ N,et al.DeepOne-Class Classification[C]//International Conference on Machine Learning.PMLR,2018:4393-4402. [24]PANG G,SHEN C,CAO L,et al.Deep Learning for Anomaly Detection:A Review[J].ACM Computing Surveys(CSUR),2021,54(2):1-38. [25]KOPPIKAR U,SUJATHA C,PATIL P,et al.Real-WorldAnomaly Detection Using Deep Learning[C]//Proceedings of 3rd Intelligent Computing and Communication(ICICC 2019).Springer Singapore,2020:333-342. [26]LIZNERSKI P,RUFF L,VANDERMEULEN R A,et al.Explainable Deep One-Class Classification[C]//International Conference on Learning Representations.2021. [27]ULGER F,YUKSEL S E,YILMAZ A.Anomaly Detection for Solder Joints Using β-VAE[J].IEEE Transactions on Components,Packaging and Manufacturing Technology,2021,11(12):2214-2221. [28]CHEN L,LI Y,DENG X,et al.Dual Auto-Encoder Gan-Based Anomaly Detection for Industrial Control System[J].Applied Sciences,2022,12(10):4986. [29]CHENG D,FAN Y,FANG S,et al.ResNet-AE for Radar Signal Anomaly Detection[J].Sensors,2022,22(16):6249. [30]LI S,LIU F,JIAO L.Self-Training Multi-Sequence Learningwith Transformer for Weakly Supervised Video Anomaly Detection[C]//Proceedings of The AAAI Conference on Artificial Intelligence.2022:1395-1403. [31]YAN S,SHAO H,XIAO Y,et al.Hybrid Robust Convolutional Autoencoder for Unsupervised Anomaly Detection of Machine Tools Under Noises[J].Robotics And Computer-Integrated Manufacturing,2023,79:102441. [32]TAO X,GONG X,ZHANG X, et al. Deep Learning for Unsupervised Anomaly Localization in Industrial Images:A Survey[J].IEEE Transactions on Instrumentation and Measurement,2022,71:1-21. [33]WANG G,HAN S,DING E,et al.Student-Teacher FeaturePyramid Matching for Anomaly Detection[C]//British Machine Vision Conference.2021. [34]HU J,SHEN L,SUN G.Squeeze-and-Excitation Networks[C]//Proceedings of The IEEE Conference on Computer Vision and Pattern Recognition.2018:7132-7141. [35]SHORTEN C,KHOSHGOFTAAR T M.A Survey on ImageData Augmentation for Deep Learning[J].Journal of Big Data,2019,6(1):1-48. [36]KAUR P,KHEHRA B S,MAVI E B S.Data Augmentation for Object Detection:A Review[C]//2021 IEEE International Midwest Symposium on Circuits and Systems(MWSCAS).IEEE,2021:537-543. [37]GOU J,YU B,MAYBANK S J,et al.Knowledge Distillation:A Survey[J].International Journal of Computer Vision,2021,129:1789-1819. [38]GOLAN I,EL-YANIV R.Deep Anomaly Detection Using Geometric Transformations[J].Advances in Neural Information Processing Systems,2018,31. [39]YE F,HUANG C,CAO J,et al.Attribute Restoration Frame-work for Anomaly Detection[J].IEEE Transactions on Multimedia,2020,24:116-127. [40]SCHLEGL T,SEEBÖCK P,WALDSTEIN S M,et al.Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery[C]//25th International Conference Information Processing in Medical Imaging(IPMI 2017).Cham:Springer International Publishing,2017:146-157. [41]NAPOLETANO P,PICCOLI F,SCHETTINI R.Anomaly Detection in Nanofibrous Materials By CNN-Based Self-Similarity[J].Sensors,2018,18(1):209. [42]LI C L,SOHN K,YOON J,et al.CutPaste:Self-SupervisedLearning for Anomaly Detection and Localization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:9664-9674. [43]YI J,YOON S.Patch SVDD:Patch-Level SVDD for AnomalyDetection and Segmentation[C]//Proceedings of the Asian Conference on Computer Vision.2020. [44]DEFARD T,SETKOV A,LOESCH A,et al.PaDim:A Patch Distribution Modeling Framework for Anomaly Detection and Localization[C]//Pattern Recognition.ICPR International Workshops and Challenges.Cham:Springer International Publishing,2021:475-489. [45]COHEN N,HOSHEN Y.Sub-Image Anomaly Detection withDeep Pyramid Correspondences[J].arXiv:2005.02357,2020. [46]PIRNAY J,CHAI K.Inpainting transformer for anomaly detection[C]//Image Analysis and Processing(ICIAP 2022).Cham:Springer International Publishing,2022:394-406. |
[1] | HUANG Haixin, CAI Mingqi, WANG Yuyao. Review of Point Cloud Semantic Segmentation Based on Graph Convolutional Neural Networks [J]. Computer Science, 2024, 51(6A): 230400196-7. |
[2] | LIU Xiaohu, CHEN Defu, LI Jun, ZHOU Xuwen, HU Shan, ZHOU Hao. Speaker Verification Network Based on Multi-scale Convolutional Encoder [J]. Computer Science, 2024, 51(6A): 230700083-6. |
[3] | WU Chunming, WANG Tiaojun. Study on Defect Detection Algorithm of Transmission Line in Complex Background [J]. Computer Science, 2024, 51(6A): 230500178-6. |
[4] | LYU Yiming, WANG Jiyang. Iron Ore Image Classification Method Based on Improved Efficientnetv2 [J]. Computer Science, 2024, 51(6A): 230600212-6. |
[5] | YANG Xiuzhang, WU Shuai, REN Tianshu, LIAO Wenjing, XIANG Meiyu, YU Xiaomin, LIU Jianyi, CHEN Dengjian. Complex Environment License Plate Recognition Algorithm Based on Improved Image Enhancement and CNN [J]. Computer Science, 2024, 51(6A): 220200162-7. |
[6] | SONG Zhen, WANG Jiqiang, HOU Moyu, ZHAO Lin. Conveyor Belt Defect Detection Network Combining Attention Mechanism with Line Laser Assistance [J]. Computer Science, 2024, 51(6A): 230800115-6. |
[7] | WU Chunming, LIU Yali. Method for Lung Nodule Detection on CT Images Using Improved YOLOv5 [J]. Computer Science, 2024, 51(6A): 230500019-6. |
[8] | XIAO Yahui, ZHANG Zili, HU Xinrong, PENG Tao, ZHANG Jun. Clothing Image Segmentation Method Based on Deeplabv3+ Fused with Attention Mechanism [J]. Computer Science, 2024, 51(6A): 230900153-7. |
[9] | LANG Lang, CHEN Xiaoqin, LIU Sha, ZHOU Qiang. Detection of Pitting Defects on the Surface of Ball Screw Drive Based on Improved Deeplabv3+ Algorithm [J]. Computer Science, 2024, 51(6A): 240200058-6. |
[10] | YIN Xudong, CHEN Junyang, ZHOU Bo. Study on Industrial Defect Augmentation Data Filtering Based on OOD Scores [J]. Computer Science, 2024, 51(6A): 230700111-7. |
[11] | KANG Zhiyong, LI Bicheng, LIN Huang. User Interest Recognition Method Incorporating Category Labels and Topic Information [J]. Computer Science, 2024, 51(6A): 230500169-8. |
[12] | PENG Bo, LI Yaodong, GONG Xianfu. Improved K-means Photovoltaic Energy Data Cleaning Method Based on Autoencoder [J]. Computer Science, 2024, 51(6A): 230700070-5. |
[13] | SI Jia, LIANG Jianfeng, XIE Shuo, DENG Yingjun. Research Progress of Anomaly Detection in IaaS Cloud Operation Driven by Deep Learning [J]. Computer Science, 2024, 51(6A): 230400016-8. |
[14] | DUAN Pengsong, DIAO Xianguang, ZHANG Dalong, CAO Yangjie, LIU Guangyi, KONG Jinsheng. WiCare:Non-contact Fall Monitoring Model for Elderly in Toilet [J]. Computer Science, 2024, 51(6A): 230700044-8. |
[15] | ZHANG Le, YU Ying, GE Hao. Mural Inpainting Based on Fast Fourier Convolution and Feature Pruning Coordinate Attention [J]. Computer Science, 2024, 51(6A): 230400083-9. |
|