Computer Science ›› 2024, Vol. 51 ›› Issue (6A): 230700044-8.doi: 10.11896/jsjkx.230700044
• Network & Communication • Previous Articles Next Articles
DUAN Pengsong1, DIAO Xianguang1, ZHANG Dalong1, CAO Yangjie1, LIU Guangyi2, KONG Jinsheng1
CLC Number:
[1]YUX P,LU B Y.Active Measures for Current Situation of Po-pulation Aging in China[J].China Economist,2023(2):21-22. [2]ZHANG T T,FENG Z Q,WANG W C,et al.A study on the status quo and influencing factors of falls among the elderly in China[J].Chinese Journal of Disease Control and Prevention,2022,26(5):502-507. [3]ZHANG H,QI S G,CUI L,et al.Prevalence of falls and fall-related injuries among Chinese community-dwelling older adults:a one-year retrospective follow-up data analysis[J].Chinese Journal of Public Health,2022,26(5):502-507. [4]LIU J,TAN R,HAN G,et al.Privacy-preserving in-home falldetection using visual shielding sensing and private information-embedding[J].IEEE Transactions on Multimedia,2020,23:3684-3699. [5]LOTFI A,ALBAWENDI S,POWELLH,et al.Supporting independent living for older adults;employing a visual based fall detection through analysing the motion and shape of the human body[J].IEEE Access,2018,6:70272-70282. [6]CHONG C J,TAN W H,CHANG Y C,et al.Visual based falldetection with reduced complexity horprasert segmentation using superpixel[C]//2015 IEEE 12th International Conference on Networking,Sensing and Control.IEEE,2015:462-467. [7]ISLAM M S,SHAHRIAR H,SNEHA S,et al.Mobile sensor-based fall detection framework[C]//2020 IEEE 44th Annual Computers,Software,and Applications Conference(COMPSAC).IEEE,2020:693-698. [8]HNOOHOM N,JITPATTANAKUL A,INLUERGSRIP,et al.Multi-sensor-based fall detection and activity daily living classification by using ensemble learning[C]//2018 International ECTI Northern Section Conference on Electrical,Electronics,Compu-ter and Telecommunications Engineering(ECTI-NCON).IEEE,2018:111-115. [9]XU J D,CHEN Q,XUY X,et al.Design of real time fall detection system based on MEMS sensor[J].Transducer and Micro-system Technologies,2022,41(7):77-80. [10]HU D M,WANG S H,SUN X Y,et al.Improved Grey Model Prediction Algorithm for Falling Down[J].Science Technology and Engineering,2019,19(20):31-36. [11]HE J,ZHANG Z J,WANGW D,et al.Low-Power Fall Detection Technology Based on ZigBee and CNN Algorithm[J].Journal of Tianjin University(Science and Technology),2019,52(10):1045-1054. [12]HALPERIRR D,HU W,SHETHA,et al.Tool release:gathe-ring 802.11n traces with channel state information[J].Acm Sigcomm Computer Communication Review,2011,41(1):53-53. [13]ZHANG T,SONG T,CHEN D,et al.WiGrus:A WiFi-based gesture recognition system using software-defined radio[J].IEEE Access,2019,7:131102-131113. [14]ABDELNASSER H,YOUSSEF M,HARRASK A.Wigest:Aubiquitous wifi-based gesture recognition system[C]//2015 IEEE Conference on Computer Communications(INFOCOM).IEEE,2015:1472-1480. [15]LI C,LIU M,CAO Z.WiHF:Gesture and user recognition withWiFi[J].IEEE Transactions on Mobile Computing,2020,21(2):757-768. [16]WANG W,LIU A X,SHAHZAD M.Gait recognition using wifi signals[C]//Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing.2016:363-373. [17]ZENG Y,PATHAK P H,MOHAPATRA P.WiWho:WiFi-based person identification in smart spaces[C]//2016 15th ACM/IEEE International Conference on Information Processing in Sensor Networks(IPSN).IEEE,2016:1-12. [18]DENG L,YANG J,YUAN S,et al.Gaitfi:Robust device-freehuman identification via wifi and vision multimodal learning[J].IEEE Internet of Things Journal,2022,10(1):625-636. [19]HU Y,ZHANG F,WU C,et al.DeFall:Environment-indepen-dent passive fall detection using WiFi[J].IEEE Internet of Things Journal,2021,9(11):8515-8530. [20]HU Y,ZHANG F,WUC,et al.A WiFi-based passive fall detection system[C]//ICASSP 2020-2020 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP).IEEE,2020:1723-1727. [21]LI X W,YU J,CHANGJ P,et al.Non-cooperative Human Behavior Recognition Method Based on CSI[J].Computer Science,2019,46(12):266-271. [22]YANG C,SHAO H R.WiFi-based indoor positioning[J].IEEE Communications Magazine,2015,53(3):150-157. [23]LUKITO Y,CHRISMANTO A R.Recurrent neural networksmodel for WiFi-based indoor positioning system[C]//2017 International Conference on Smart Cities,Automation & Intelligent Computing Systems(ICON-SONICS).IEEE,2017:121-125. [24]DANG X C,ZHANG T,HAO Z J,et al.Indoor Key Area Monitoring Method Based on WiFi[J].Journal of Chinese Computer Systems,2020,41(2):344-349. [25]WANG Y,WU K,NIL M.Wifall:Device-free fall detection by wireless networks[J].IEEE Transactions on Mobile Computing,2016,16(2):581-594. [26]ZHANG D,WANG H,WANG Y,et al.Anti-fall:A non-intrusive and real-time fall detector leveraging CSI from commodity WiFi devices[C]//13th International Conference on Smart Homes and Health Telematics(ICOST 2015).Geneva,Switzerland,Springer International Publishing,2015:181-193. [27]WANG H,ZHANG D,WANG Y,et al.RT-Fall:A real-timeand contactless fall detection system with commodity WiFi devices[J].IEEE Transactions on Mobile Computing,2016,16(2):511-526. [28]RAN Y X,YU J,CHANG J,et al.A CSI-based fall detectionmethod[J].Journal of Yunnan University(Natural Sciences Edition),2020,42(2):220-227. [29]LECUN Y,BOTTOU L,BENGIOY,et al.Gradient-based lear-ning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324. [30]WU K,XIAO J,YI Y,et al.FILA:Fine-grained indoor localization[C]//2012 Proceedings IEEE INFOCOM.IEEE,2012:2210-2218. [31]GU Y,ZHANG X,LIU Z,et al.BeSense:leveraging WiFi channel data and computational intelligence for behavior analysis[J].IEEE Computational Intelligence Magazine,2019,14(4):31-41. [32]HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural Computation,1997,9(8):1735-1780. [33]SRIVASTAVA N,HINTON G,KRIZHEVSKY A,et al.Dropout:a simple way to prevent neural networks from overfitting[J].The journal of Machine Learning Research,2014,15(1):1929-1958. [34]DUAN P S,LI J X,WANG C,et al.WiSFall:a Device-free Fall Detection Model for Shower Room[J].Journal of Chinese Computer Systems,2023,44(2):232-238. [35]YANG J,CHEN X,ZOU H,et al.SenseFi:A library and benchmark on deep-learning-empowered WiFi human sensing[J].Patterns,2023,4(3). |
[1] | WANG Yingjie, ZHANG Chengye, BAI Fengbo, WANG Zumin. Named Entity Recognition Approach of Judicial Documents Based on Transformer [J]. Computer Science, 2024, 51(6A): 230500164-9. |
[2] | LIANG Fang, XU Xuyao, ZHAO Kailong, ZHAO Xuanfeng, ZHANG Guijun. Remote Template Detection Algorithm and Its Application in Protein Structure Prediction [J]. Computer Science, 2024, 51(6A): 230600225-7. |
[3] | PENG Bo, LI Yaodong, GONG Xianfu, LI Hao. Method for Entity Relation Extraction Based on Heterogeneous Graph Neural Networks and TextSemantic Enhancement [J]. Computer Science, 2024, 51(6A): 230700071-5. |
[4] | ZHANG Tianchi, LIU Yuxuan. Research Progress of Underwater Image Processing Based on Deep Learning [J]. Computer Science, 2024, 51(6A): 230400107-12. |
[5] | WANG Guogang, DONG Zhihao. Lightweight Image Semantic Segmentation Based on Attention Mechanism and Densely AdjacentPrediction [J]. Computer Science, 2024, 51(6A): 230300204-8. |
[6] | WANG Li, CHEN Gang, XIA Mingshan, HU Hao. DUWe:Dynamic Unknown Word Embedding Approach for Web Anomaly Detection [J]. Computer Science, 2024, 51(6A): 230300191-5. |
[7] | HUANG Haixin, CAI Mingqi, WANG Yuyao. Review of Point Cloud Semantic Segmentation Based on Graph Convolutional Neural Networks [J]. Computer Science, 2024, 51(6A): 230400196-7. |
[8] | LYU Yiming, WANG Jiyang. Iron Ore Image Classification Method Based on Improved Efficientnetv2 [J]. Computer Science, 2024, 51(6A): 230600212-6. |
[9] | YANG Xiuzhang, WU Shuai, REN Tianshu, LIAO Wenjing, XIANG Meiyu, YU Xiaomin, LIU Jianyi, CHEN Dengjian. Complex Environment License Plate Recognition Algorithm Based on Improved Image Enhancement and CNN [J]. Computer Science, 2024, 51(6A): 220200162-7. |
[10] | SONG Zhen, WANG Jiqiang, HOU Moyu, ZHAO Lin. Conveyor Belt Defect Detection Network Combining Attention Mechanism with Line Laser Assistance [J]. Computer Science, 2024, 51(6A): 230800115-6. |
[11] | WU Chunming, LIU Yali. Method for Lung Nodule Detection on CT Images Using Improved YOLOv5 [J]. Computer Science, 2024, 51(6A): 230500019-6. |
[12] | YIN Xudong, CHEN Junyang, ZHOU Bo. Study on Industrial Defect Augmentation Data Filtering Based on OOD Scores [J]. Computer Science, 2024, 51(6A): 230700111-7. |
[13] | QIAO Hong, XING Hongjie. Attention-based Multi-scale Distillation Anomaly Detection [J]. Computer Science, 2024, 51(6A): 230300223-11. |
[14] | SI Jia, LIANG Jianfeng, XIE Shuo, DENG Yingjun. Research Progress of Anomaly Detection in IaaS Cloud Operation Driven by Deep Learning [J]. Computer Science, 2024, 51(6A): 230400016-8. |
[15] | ZHANG Le, YU Ying, GE Hao. Mural Inpainting Based on Fast Fourier Convolution and Feature Pruning Coordinate Attention [J]. Computer Science, 2024, 51(6A): 230400083-9. |
|