Computer Science ›› 2024, Vol. 51 ›› Issue (7): 71-79.doi: 10.11896/jsjkx.231100200
• Database & Big Data & Data Science • Previous Articles Next Articles
BAI Wenchao1, BAI Shuwen2, HAN Xixian3, ZHAO Yubo3
CLC Number:
[1]LIU C,MAO W,GAO Y,et al.Adaptive recollected RNN for workload forecasting in database-as-a-service[C]//18th International Conference Service-Oriented Computing(ICSOC).Berlin:Springer,2020:431-438. [2]SHAHEEN N,RAZA B,SHAHID A R,et al.A novel optimized case-based reasoning approach with k-means clustering and genetic algorithm for predicting multi-class workload characterization in autonomic database and data warehouse system[J].IEEE Access,2020,8(1):105713-105727. [3]SHAHEEN N,RAZA B,SHAHID A R,et al.Autonomic work-load performance modeling for large-scale databases and data warehouses through deep belief network with data augmentation using conditional generative adversarial networks[J].IEEE Access,2021,9(1):97603-97620. [4]QIAN H,WEN Q,SUN L,et al.RobustScaler:QoS-Aware autoscaling for complex workloads[C]//2022 IEEE 38th International Conference on Data Engineering(ICDE).Piscataway:IEEE,2022:2762-2775. [5]YUAN Z,CHEN H,HUANG Z,et al.A lightweight generaladaptive optimization tool for relational DBMSs under HTAP workloads[C]//2022 IEEE International Conference on Services Computing(SCC).Piscataway:IEEE,2022:45-53. [6]MEDURI V V,CHOWDHURY K,SARWAT M.Evaluation of machine learning algorithms in predicting the next SQL query from the future[J].ACM Transactions on Database Systems(TODS),2021,46(1):1-46. [7]ZHI KANG J K,GAURAV,TAN S Y,et al.Efficient deeplearning pipelines for accurate cost estimations over large scale query workload[C]//Proceedings of the 2021 ACM SIGMOD International Conference on Management of Data.New York:ACM,2021:1014-1022. [8]TANG C,WANG B,LUO Z,et al.Forecasting SQL query cost at twitter[C]//2021 IEEE International Conference on Cloud Engineering(IC2E).Piscataway:IEEE,2021:154-160. [9]YAN Z,LU J,CHAINANI N,et al.Workload-Aware perfor-mance tuning for autonomous DBMSs[C]//2021 IEEE 37th International Conference on Data Engineering(ICDE).Piscataway:IEEE,2021:2365-2368. [10]TAFT R,ELSAYED N,SERAFINI M,et al.P-store:An elastic database system with predictive provisioning[C]//Proceedings of the 2018 International Conference on Management of Data.New York:ACM,2018:205-219. [11]ELNAFFAR S,MARTIN P.The Psychic-Skeptic predictionframework for effective monitoring of DBMS workloads[J].Data & Knowledge Engineering,2009,68(4):393-414. [12]HIGGINSON A S,DEDIU M,ARSENE O,et al.Databaseworkload capacity planning using time series analysis and machine learning[C]//Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data.New York:ACM,2020:769-783. [13]LORIDO B T,MIGUEL A J,LOZANO J A.A review of auto-scaling techniques for elastic applications in cloud environments[J].Journal of Grid Computing,2014,12(4):559-592. [14]PAVLO A,JONES E P C,ZDONIK S.On predictive modeling for optimizing transaction execution in parallel OLTP systems[J].arXiv:1110.6647,2011. [15]HOLZE M,RITTER N.Autonomic databases:Detection ofworkload shifts with n-gram-models[C]//East European Conference on Advances in Databases and Information Systems.Berlin:Springer,2008:127-142. [16]DU N,YE X,WANG J.Towards workflow-driven database system workload modeling[C]//Proceedings of the Second International Workshop on Testing Database Systems.New York:ACM,2009:1-6. [17]MA L,VAN AKEN D,HENFNY A,et al.Query-based workload forecasting for self-driving database management systems[C]//Proceedings of the 2018 International Conference on Ma-nagement of Data.New York:ACM,2018:631-645. [18]SHAHRIVARI H,PAPAPETROU O,FLETCHER G.Workload prediction for adaptive approximate query processing[C]//2022 IEEE International Conference on Big Data(Big Data).Piscataway:IEEE,2022:217-222. [19]DURAND G C,PINNECKE M,PIRIYEV R,et al.GridFormation:towards self-driven online data partitioning using reinforcement learning[C]//Proceedings of the First International Workshop on Exploiting Artificial Intelligence Techniques for Data Management.New York:ACM,2018:1-7. [20]HUANG X,CAO S,GAO Y,et al.LightPro:Lightweight pro-babilistic workload prediction framework for database-as-a-ser-vice[C]//2022 IEEE International Conference on Web Services(ICWS).Piscataway:IEEE,2022:160-169. [21]MOZAFARI B,CURINO C,JINDAL A,et al.Performance and resource modeling in highly-concurrent OLTP workloads[C]//Proceedings of the 2013 ACM SIGMOD International Confe-rence on Management of Data.New York:ACM,2013:301-312. [22]JAIN S,HOWE B,YAN J,et al.Query2vec:An evaluation of NLP techniques for generalized workload analytics[J].arXiv:1801.05613,2018. [23]HUANG X,CHENG Y,GAO X,et al.TEALED:A multi-step workload forecasting approach using time-sensitive EMD and auto LSTM Encoder-Decoder[C]//27th International Confe-rence Database Systems for Advanced Applications(DASFAA).Berlin:Springer,2022:706-713. [24]XU M,SONG C,WU H,et al.esDNN:deep neural network based multivariate workload prediction in cloud computing environments[J].ACM Transactions on Internet Technology(TOIT),2022,22(3):1-24. |
[1] | ZENG Zihui, LI Chaoyang, LIAO Qing. Multivariate Time Series Anomaly Detection Algorithm in Missing Value Scenario [J]. Computer Science, 2024, 51(7): 108-115. |
[2] | YANG Zhenzhen, WANG Dongtao, YANG Yongpeng, HUA Renyu. Multi-embedding Fusion Based on top-N Recommendation [J]. Computer Science, 2024, 51(7): 140-145. |
[3] | HU Haibo, YANG Dan, NIE Tiezheng, KOU Yue. Graph Contrastive Learning Incorporating Multi-influence and Preference for Social Recommendation [J]. Computer Science, 2024, 51(7): 146-155. |
[4] | LI Jiaying, LIANG Yudong, LI Shaoji, ZHANG Kunpeng, ZHANG Chao. Study on Algorithm of Depth Image Super-resolution Guided by High-frequency Information ofColor Images [J]. Computer Science, 2024, 51(7): 197-205. |
[5] | LOU Zhengzheng, ZHANG Xin, HU Shizhe, WU Yunpeng. Foggy Weather Object Detection Method Based on YOLOX_s [J]. Computer Science, 2024, 51(7): 206-213. |
[6] | YAN Jingtao, LI Yang, WANG Suge, PAN Bangze. Overlap Event Extraction Method with Language Granularity Fusion Based on Joint Learning [J]. Computer Science, 2024, 51(7): 287-295. |
[7] | WEI Ziang, PENG Jian, HUANG Feihu, JU Shenggen. Text Classification Method Based on Multi Graph Convolution and Hierarchical Pooling [J]. Computer Science, 2024, 51(7): 303-309. |
[8] | WANG Xianwei, FENG Xiang, YU Huiqun. Multi-agent Cooperative Algorithm for Obstacle Clearance Based on Deep Deterministic PolicyGradient and Attention Critic [J]. Computer Science, 2024, 51(7): 319-326. |
[9] | FAN Yi, HU Tao, YI Peng. Host Anomaly Detection Framework Based on Multifaceted Information Fusion of SemanticFeatures for System Calls [J]. Computer Science, 2024, 51(7): 380-388. |
[10] | LIU Xiaohu, CHEN Defu, LI Jun, ZHOU Xuwen, HU Shan, ZHOU Hao. Speaker Verification Network Based on Multi-scale Convolutional Encoder [J]. Computer Science, 2024, 51(6A): 230700083-6. |
[11] | ZHU Yuliang, LIU Juntao, RAO Ziyun, ZHANG Yi, CAO Wanhua. Knowledge Reasoning Model Combining HousE with Attention Mechanism [J]. Computer Science, 2024, 51(6A): 230600209-8. |
[12] | BAI Yu, WANG Xinzhe. Study on Hypernymy Recognition Based on Combined Training of Attention Mechanism and Prompt Learning [J]. Computer Science, 2024, 51(6A): 230700226-5. |
[13] | WANG Guogang, DONG Zhihao. Lightweight Image Semantic Segmentation Based on Attention Mechanism and Densely AdjacentPrediction [J]. Computer Science, 2024, 51(6A): 230300204-8. |
[14] | ZHANG Le, YU Ying, GE Hao. Mural Inpainting Based on Fast Fourier Convolution and Feature Pruning Coordinate Attention [J]. Computer Science, 2024, 51(6A): 230400083-9. |
[15] | SUN Yang, DING Jianwei, ZHANG Qi, WEI Huiwen, TIAN Bowen. Study on Super-resolution Image Reconstruction Using Residual Feature Aggregation NetworkBased on Attention Mechanism [J]. Computer Science, 2024, 51(6A): 230600039-6. |
|