Computer Science ›› 2025, Vol. 52 ›› Issue (1): 170-182.doi: 10.11896/jsjkx.231100171
• Database & Big Data & Data Science • Previous Articles Next Articles
YE Lishuo, HE Zhixue
CLC Number:
[1]LIU H,YIN X,CHEN J,et al.Multi-Dimensional Time-Series Prediction Based on Hybrid Network Models[J].Computer Engineering,2023,49(1):121-129. [2]LI X,LIU X P,LI W C,et al.Survey on Contrastive Learning Research.Journal of Chinese Computer Systems.2023,44(4):787-797. [3]YAO X,GAO J Y,XU C S.Self-supervised Graph Contrastive Learning for Video Question Answering[J].Journal of Software,2023,34(5):2083-2100. [4]YANG B,LUO J C,SONG Y T,et al.Time Series Clustering Method Based on Contrast-ive Learning[J].Computer Science,2024,51(2):63-72. [5]FRANCESCHI J Y,DIEULEVEUT A,JAGGI M.Unsuper-vised scalable representation learning for multivariate time series[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems.2019:4650-4661. [6]TONEKABONI S,EYTAN D,GOLDENBERG A.Unsuper-vised representation learning for time series with temporal neighborhood coding[C]//Proceedings of the 2020 InternationalConference on Learning Representations,2020. [7]ELDELE E,RAGAB M,CHEN Z,et al.Time-series representation learning via temporal and contextual contrasting [EB/OL].(2021-06-26) [2023-09-15].https://arxiv.org/abs/2106.14112. [8]YUE Z,WANG Y,DUAN J,et al.Ts2vec:Towards universal representation of time series[C]//Proceedings of the 36th AAAI Conference on Artificial Intelligence.Palo Alto:AAAI,2022:8980-8987. [9]ZHENG X,CHEN X,SCHURCH M,et al.SimTS:Rethinking Contrastive Representatio-n Learning for Time Series Forecasting.[EB/OL].(2023-03-21) [2023-09-15].https://arxiv.org/abs/2303.18205. [10]WEN Q,GAO J,SONG X,et al.RobustSTL:A robust seasonal-trend decomposition algorithm for long time series[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence.Palo Alto:AAAI,2019:5409-5416. [11]CLEVELAND R B,CLEVELAND W S,MCRAE J E,et al.STL:A seasonal-trend decomposition[J].J.Off.Stat,1990,6(1):3-73. [12]ZHANG K,WEN Q,ZHANG C,et al.Self-Supervised Learning for Time Series Analysis:Taxonomy,Progress,and Prospects[J].arXiv:2306.10125,2023. [13]DOKUMENTOV A,HYNDMAN R J.STR:A seasonal-trend decomposition procedure based on regression[J].arXiv:2009.05894,2020. [14]WU H X,HU T G ,LIU Y,et al.TimesNet:Temporal 2D-Varia-tion Modeling for General Time Series Analysis[C]//Procee-dings of the 11th International Conference on Learning Representations.2022. [15]JAISWAL A,BABU A R,ZADEH M Z,et al.A survey on con-trastive self-supervised learning[J].Technologies,2020,9(1):2. [16]CHEN T,KORNBLITH S,NOROUZI M,et al.A simpleframework for contrastive learning of visual representations[C]//Proceedings of the 2020 International Conference on Machine Learning.PMLR,2020:1597-1607. [17]OORD A,LI Y,VINYALS O.Representation learning with contrastive predictive coding [EB/OL].(2019-01-22) [2023-09-15].https://arxiv.org/abs/1807.03748. [18]DAU H A,BAGNALL A,KAMGAR K,et al.The UCR time series archive[J].IEEE/CAA Journal of Automatica Sinica,2019,6(6):1293-1305. [19]BAGNALL A,DAU H A,LINES J,et al.The UEA multiva-riate time series classification archive [EB/OL].(2018-10-31) [2023-09-15].https://arxiv.org/abs/1811.00075. [20]WU H,XU J,WANG J,et al.Autoformer:Decomposition transformers with auto-correlation for long-term series forecasting[J].Advances in Neural Information Processing Systems,2021,34:22419-22430. [21]ABDULAAL A,LIU Z,LANCEWICKI T.Practical approach to asynchronous multivariate time series anomaly detection and localization[C]//Proceedings of the 27th ACM SIGKDD Confe-rence on Knowledge Discovery & Data Mining.New York:ACM,2021:2485-2494. [22]SU Y,ZHAO Y J,NIU C H,et al.Robust anomaly detection for multivariate time series through stochastic recurrent neural network[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.New York:ACM,2019:2828-2837. [23]LI D,CHEN D,JIN B,et al.MAD-GAN:multivariate anomaly detection for time series data with generative adversarial networks[C]//Proceedings of the 2019 International Conference on Artificial Neural Networks.Berlin:Springer,2019:214-232. [24]ZHAO Y,NASRULLAH Z,LI Z.PyOD:A Python Toolbox for Scalable Outlier Detection[J].Journal of Machine Learning Research,2019,20:1-7. |
[1] | MENG Lingjun, CHEN Hongchang, WANG Gengrun. Social Bots Detection Based on Multi-relationship Graph Attention Network [J]. Computer Science, 2025, 52(1): 298-306. |
[2] | LUO Hangyu, WANG Xiaoping, MEI Meng, ZHAO Wenhao, LIU Sichun. Contrastive Representation Learning for Industrial Defect Detection [J]. Computer Science, 2025, 52(1): 210-220. |
[3] | NIU Guanglin, LIN Zhen. Survey of Knowledge Graph Representation Learning for Relation Feature Modeling [J]. Computer Science, 2024, 51(9): 182-195. |
[4] | DAI Chaofan, DING Huahua. Domain-adaptive Entity Resolution Algorithm Based on Semi-supervised Learning [J]. Computer Science, 2024, 51(9): 214-222. |
[5] | TIAN Sicheng, HUANG Shaobin, WANG Rui, LI Rongsheng, DU Zhijuan. Contrastive Learning-based Prompt Generation Method for Large-scale Language Model ReverseDictionary Task [J]. Computer Science, 2024, 51(8): 256-262. |
[6] | XU Bei, LIU Tong. Semi-supervised Emotional Music Generation Method Based on Improved Gaussian Mixture Variational Autoencoders [J]. Computer Science, 2024, 51(8): 281-296. |
[7] | WANG Liqin, WAN Yuan, LUO Ying. Measurable Shapelets Extraction Based on Symbolic Rrepresentation for Time Series Classification [J]. Computer Science, 2024, 51(8): 106-116. |
[8] | ZENG Zihui, LI Chaoyang, LIAO Qing. Multivariate Time Series Anomaly Detection Algorithm in Missing Value Scenario [J]. Computer Science, 2024, 51(7): 108-115. |
[9] | HU Haibo, YANG Dan, NIE Tiezheng, KOU Yue. Graph Contrastive Learning Incorporating Multi-influence and Preference for Social Recommendation [J]. Computer Science, 2024, 51(7): 146-155. |
[10] | WEI Ziang, PENG Jian, HUANG Feihu, JU Shenggen. Text Classification Method Based on Multi Graph Convolution and Hierarchical Pooling [J]. Computer Science, 2024, 51(7): 303-309. |
[11] | ZHANG Hui, ZHANG Xiaoxiong, DING Kun, LIU Shanshan. Device Fault Inference and Prediction Method Based on Dynamic Graph Representation [J]. Computer Science, 2024, 51(7): 310-318. |
[12] | TIAN Qing, LU Zhanghu, YANG Hong. Unsupervised Domain Adaptation Based on Entropy Filtering and Class Centroid Optimization [J]. Computer Science, 2024, 51(7): 345-353. |
[13] | YIN Xudong, CHEN Junyang, ZHOU Bo. Study on Industrial Defect Augmentation Data Filtering Based on OOD Scores [J]. Computer Science, 2024, 51(6A): 230700111-7. |
[14] | SI Jia, LIANG Jianfeng, XIE Shuo, DENG Yingjun. Research Progress of Anomaly Detection in IaaS Cloud Operation Driven by Deep Learning [J]. Computer Science, 2024, 51(6A): 230400016-8. |
[15] | LIU Wei, SONG You, ZHUO Peiyan, WU Weiqiang, LIAN Xin. Study on Kcore-GCN Anti-fraud Algorithm Fusing Multi-source Graph Features [J]. Computer Science, 2024, 51(6A): 230600040-7. |
|