Computer Science ›› 2025, Vol. 52 ›› Issue (11A): 250100106-6.doi: 10.11896/jsjkx.250100106
• Network & Communication • Previous Articles Next Articles
HUANG Xinli, GAO Guoju
CLC Number:
| [1]朱永伟.基于深度学习和注意力机制的文本分类关键技术研究[D].南京信息工程大学,2024. [2]CHENG Z T,HUANG H R,XUE H,et al.Event CausalityIdentification Model Based on Prompt Learning and Hypergraph[J].Computer Science,2025,52(9):303-312. [3]LYU Y F,ZHANG X L,GAO W N,et al.The Application of Deep Learning in Customs Image Recognition Technology[J].China Port Science and Technology,2024,6(Z2):4-12. [4]井煜.基于深度学习的局部遮挡人脸图像识别方法研究[J].互联网周刊,2024,(21):56-58. [5]VOGELS T,KARIMIREDDY S P,JAGGI M.Powersgd:Practical low-rank gradient compression for distributed optimization[C]//NeurIPS.2019:14236-14245. [6]李诗琪.分布式深度学习模型训练中梯度稀疏方法的改进[D].北京:北京邮电大学,2021. [7]SAPIO A,CANINI M,HO C Y,et al.Scaling distributed machine learning with in-network aggregation[J/OL].https://www.usenix.org/system/files/nsdi21-sapio.pdf. [8]SEIDE F,FU H,DROPPO J,et al.1-bit stochastic gradient descent and its application to data-parallel distributed training of speech dnns[C]//INTERSPEECH.2014:1058-1062. [9]欧阳硕.基于梯度压缩的分布式深度学习通信优化技术研究[D].长沙:国防科技大学,2021. [10]ESSER S K,MCKINSTRY J L,BABLANI D,et al.Learned step size quantization[C]//ICLR.2020. [11]LI R,WANG Y,LIANG F,et al.Fully quantized network for object detection[C]//CVPR.2019:2810-2819. [12]刘松伟.高性能二值卷积神经网络的研究与实现[D].杭州:浙江大学,2021. [13]AJI A FHEAFIELD K.Sparse communication for distributed gradient descent[C]//EMNLP.2017:1440-445. [14]HORVÁTH S,RICHTÁRIK P.A better alternative to errorfeedback for communication-efficient distributed learning[C]//ICLR.2021. [15]LIN Y,HAN S,MAO H,et al.Deep gradient compression:Reducing the communication bandwidth for distributed training[C]//ICLR.2018. [16]牛丽玲.基于深度学习处理器的Top-K算法实现及应用[D].北京:中国科学院大学(中国科学院大学人工智能学院),2020. [17]ABDELMONIEM A M,CANINI M.Dc2:Delay-aware compression control for distributed machine learning[C]//INFOCOM.2021. [18]ALISTARH D,GRUBIC D,LI J,et al.Qsgd:Communication-efficient sgd via gradient quantization and encoding[C]//NIPS.2017:1709-1720. [19]DRYDEN N,MOON T,JACOBS S A,et al.Communicationquantization for data-parallel training of deep neural networks[C]//MLHPC@SC.2016:1-8. [20]SHI S,TANG Z,WANG Q,et al.Layer-wise adaptive gradient sparsification for distributed deep learning with convergence guarantees[C]//ECAI.2020:1467-1474. [21]ALISTARH D,HOEFLER T,JOHANSSON M,et al.The convergence of sparsified gradient methods[C]//NeurIPS.2018:5977-5987. [22]CHEN C Y,NI J,LU S,et al.Gopalakrishnan.Scalecom:Scalable sparsified gradient compression for communication-efficient distributed training[C]//NeurIPS.2020. [23]BRADLEY J K,KYROLA A,BICKSON D,et al.Parallel coordinate descent for l1-regularized loss minimization[C]//ICML.2011:321-328. |
| [1] | XIA Zhuoqun, ZHOU Zihao, DENG Bin, KANG Chen. Security Situation Assessment Method for Intelligent Water Resources Network Based on ImprovedD-S Evidence [J]. Computer Science, 2025, 52(6A): 240600051-6. |
| [2] | LIN Zheng, LIU Sicong, GUO Bin, DING Yasan, YU Zhiwen. Adaptive Operator Parallel Partitioning Method for Heterogeneous Embedded Chips in AIoT [J]. Computer Science, 2025, 52(2): 299-309. |
| [3] | WANG Liuyi, ZHOU Chun, ZENG Wenqiang, HE Xingxing, MENG Hua. High-frequency Feature Masking-based Adversarial Attack Algorithm [J]. Computer Science, 2025, 52(10): 374-381. |
| [4] | DU Yu, YU Zishu, PENG Xiaohui, XU Zhiwei. Padding Load:Load Reducing Cluster Resource Waste and Deep Learning Training Costs [J]. Computer Science, 2024, 51(9): 71-79. |
| [5] | ZHU Fukun, TENG Zhen, SHAO Wenze, GE Qi, SUN Yubao. Semantic-guided Neural Network Critical Data Routing Path [J]. Computer Science, 2024, 51(9): 155-161. |
| [6] | HAN Bing, DENG Lixiang, ZHENG Yi, REN Shuang. Survey of 3D Point Clouds Upsampling Methods [J]. Computer Science, 2024, 51(7): 167-196. |
| [7] | XU Xiaohua, ZHOU Zhangbing, HU Zhongxu, LIN Shixun, YU Zhenjie. Lightweight Deep Neural Network Models for Edge Intelligence:A Survey [J]. Computer Science, 2024, 51(7): 257-271. |
| [8] | LI Wenting, XIAO Rong, YANG Xiao. Improving Transferability of Adversarial Samples Through Laplacian Smoothing Gradient [J]. Computer Science, 2024, 51(6A): 230800025-6. |
| [9] | CHEN Haiyan, ZHU Junlin, WANG Ping. Study on Prediction Modeling and Compensation of Circular Target Center Positioning Error Based on GA-BP [J]. Computer Science, 2023, 50(11A): 221100170-5. |
| [10] | REN Shuyao, SONG Jiangling, ZHANG Rui. Early Screening Method for Depression Based on EEG Signal [J]. Computer Science, 2023, 50(11A): 221100139-6. |
| [11] | QIAN Dong-wei, CUI Yang-guang, WEI Tong-quan. Secondary Modeling of Pollutant Concentration Prediction Based on Deep Neural Networks with Federal Learning [J]. Computer Science, 2022, 49(11A): 211200084-5. |
| [12] | FAN Hong-jie, LI Xue-dong, YE Song-tao. Aided Disease Diagnosis Method for EMR Semantic Analysis [J]. Computer Science, 2022, 49(1): 153-158. |
| [13] | ZHOU Xin, LIU Shuo-di, PAN Wei, CHEN Yuan-yuan. Vehicle Color Recognition in Natural Traffic Scene [J]. Computer Science, 2021, 48(6A): 15-20. |
| [14] | SUN Yan-li, YE Jiong-yao. Convolutional Neural Networks Compression Based on Pruning and Quantization [J]. Computer Science, 2020, 47(8): 261-266. |
| [15] | JIANG Wen-bin, FU Zhi, PENG Jing, ZHU Jian. 4Bit-based Gradient Compression Method for Distributed Deep Learning System [J]. Computer Science, 2020, 47(7): 220-226. |
|
||