Computer Science ›› 2025, Vol. 52 ›› Issue (3): 33-40.doi: 10.11896/jsjkx.240800069
• 3D Vision and Metaverse • Previous Articles Next Articles
CAO Mingwei1, XING Jingjie1, CHENG Yifeng2, ZHAO Haifeng1
CLC Number:
[1]AGIA C,KRISHNA M,MOHAMED N.Evaluating robot task planning over large 3D scene graphs[C]//Conference on Robot Learning.2022:46-58. [2]ZHANG Y,GONG M,LI J.Self-supervised monocular depth estimation with multiscale perception[J].IEEE Transactions on Image Processing,2022,31:3251-3266. [3]EIGEN D,FERGUS V.Predicting depth,surface normals andsemantic labels with a common multi-scale convolutional architecture[C]//IEEE International Conference on Computer Vision.2014:2650-2658. [4]SONG X,LI W,ZHOU D.MLDA-Net:multi-level dual attention-based network for self-supervised monocular depth estimation[J].IEEE Transactions on Image Processing,2021,30:4691-4705. [5]ZHANG N,NEX F,VOSSELMAN G.Lite-Mono:a lightweight CNN and transformer architecture for self-supervised monocular depth estimation[C]//Proceedings of the IEEE/CVF Confe-rence on Computer Vision and Pattern Recognition.2022:18537-18546. [6]CAI J,DONG F,SUN S,et al.Unsupervised Learning of Monocular Depth Estimation:A Survey[J].Computer Science,2024,51(2):117-134. [7]MINSOO S,LIM S,KIM W.Monocular depth estimation using laplacian pyramid-based depth residuals[J].IEEE Transactions on Circuits and Systems for Video Technology,2021,31(11):4381-4393. [8]FU H,GONG M,WANG C.Recognition.deep ordinal regres-sion network for monocular depth estimation[C]//Conference on Computer Vision and Pattern Recognition.2018:2002-2011. [9]KIM D,GA S W,AHN P,et al.Global-Local path networks for monocular depth estimation with vertical cutdepth[J].arXiv:2201.07436,2022. [10]PATIL V,SAKARIDIS C,LINIGER A.P3Depth:monoculardepth estimation with a piecewise planarity prior[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2022:1600-1611. [11]YUAN W,GU X,DAI Z,et al.Neural window fully-connected CRFS for monocular depth estimation[C]//Proceedings of the IEEEConference on Computer Vision and Pattern Recognition.2022:3916-3925. [12]ELKERDAWY S,ZHANG H.Lightweight monocular depth estimation model by joint end-to-end filter pruning[C]//IEEE International Conference on Image Processing.2019:4290-4294. [13]LI Z,CHEN Z,LIU X,et al.DepthFormer:exploiting long-range correlation and local information for accurate monocular depth estimation[J].Machine Intelligence Research,2022,20:837-854. [14]RUDOLPH M B,DAWOUD Y,GULDENRING R,et al.Lightweight monocular depth estimation through guided decoding.International[C]//Conference on Robotics and Automation.2022:2344-2350. [15]GODARD C,MACAODHA O.Unsupervised monocular depth estimation with left-right consistency[C]//IEEE Conference on Computer Vision and Pattern Recognition.2017:270-279. [16]ZHAO C,ZHANG Y,POGGI M,et al.MonoViT:self-supervised monocular depth estimation with a vision transformer[C]//International Conference on 3D Vision.2022:668-678. [17]YUAN J,ZHAO H,BU P,et al.Channel-Wise attention-based network for self-supervised monocular depth estimation[C]//International Conference on 3D Vision.2021:464-473. [18]ZHOU H,GREENWOOD D,TAYLOR S.Self-supervised monocular depth estimation with internal feature fusion[J].arXiv:2110.09482,2021. [19]PENG R,WANG R,LAI Y,et al.Excavating the potential capacity of self-supervised monocular depth estimation[C]//International Conference on Computer Vision.2021:15540-15549. [20]HAN W,YIN J,SHEN J.Self-supervised monocular depth estimation by direction-aware cumulative convolution network[C]//International Conference on Computer Vision.2023:8613-8623. [21]ZHOU Z M,DONG Q L.Learning occlusion-aware coarse-to-fine depth map for self-supervised monocular depth estimation[C]//Proceedings of the 30th ACM International Conference on Multimedia.2022:6386-6395. [22]SAUDERS K,VOGIATZIS G,MANSO L J A.Self-supervised monocular depth estimation:let’s talk about the weather[C]//International Conference on Computer Vision.2023:8907-8917. [23]GAO Q,PENG G,CHEN Z,et al.Monovim:Enhancing self-supervised monocular depth estimation via mamba[J].arXiv:2406.04532,2024 [24]YIN Z,SHI J.GeoNet:unsupervised learning of dense depth,optical flow and camera pose[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:1983-1992. [25]HE K,ZHANG X,REN S,et al.Deep residual learning forimage recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2015:770-778. [26]SIMONYAN K,ZISSERMAN A J C.Very deep convolutional networks for large-scale image recognition [J].arXiv:1409.1556,2014. [27]EIGEN D,PUHUHRSCH C,FERGUS R.Depth map prediction from a single image using a multi-scale deep network[C]//NIPS2014.2014:27-38. [28]UMMENHOFER B,ZHOU H,UGRIG J,et al.DeMoN:depth and motion network for learning monocular stereo[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:5638-5047. [29]LEE C Y,GALLAHGER P W,TU Z J A.Generalizing pooling functions in convolutional neural networks:mixed,gated,and tree[C]//Artificial Intelligence and Statistics.2016:464-472. [30]RANFTL R,BOCHKOVSKIY A,KOLTUN V.Vision trans-formers for dense prediction [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2021:12179-12188. [31]VARMA A,CHAWLA H,ZONOOZ B,et al.Transformers in self-supervised monocular depth estimation with unknown ca-mera intrinsics[J].arXiv:2202.03131,2022. [32]RONNEBERGER O,FISCHER P,BROX T J A.U-Net:convolutional networks for biomedical image segmentation [C]//18th International Conference. Medical Image Computing and Computer-Assisted Intervention(MICCAI 2015).2015:234-241. [33]GEIGER A,LENZ P,URTASUN V.Are we ready for autonomous driving? the kitti vision benchmark suite[C]//IEEE Conference on Computer Vision and Pattern Recognition.2012:3354-3361. [34]SAXENA A,SUN M,NG A.Make3D:learning 3d scene structure from a single still image[C]//IEEE 11th International Conference on Computer Vision.IEEE,2007:1-8. [35]GEIGER A,LENZ P,STILLER C,et al.The KITTI dataset[J].The International Journal of Robotics Research,2013,32(11):1231-1237. [36]ADAM P,GROSS S,CHINTALA S,et al.Automatic different-iation in pytorch[J].arXiv:22138.05524,2017. [37]LOSHCHILOV I,HUTTER F.Decoupled weight decay regularization [J].arXiv:1711.05101,2017. [38]LOSHCHILOV I,HUTTER F.SGDR:stochastic gradient descent with warm restarts [J].arXiv:1608.03983,2016. [39]RUSSAKOVSKY O,DENG J,SU H,et al.ImageNet:largescale visual recognition challenge[J].International Journal of Computer Vision,2015,115(3):211-252. [40]LYU X,LIU L,WANG M,et al.HR-Depth:high resolutionself-supervised monocular depth estimation [C]//Proceedings of the AAAI Conference on Artificial Intelligence.2021:2294-2301. [41]GODARD C,AODHA M O.Digging into self-supervised mono-cular depth estimation.international[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:3828-3838. [42]ZHOU Z,FAN X,SHI P,et al.R-MSFM:recurrent multi-scale feature modulation for monocular depth estimating[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2021:12777-12786. [43]BAE J H,MOON S.MonoFormer:towards generalization ofself-supervised monocular depth estimation with transformers[J].arXiv:2205.11083,2022. [44]WANG C,BUENAPOSADA J M,ZHU R.Learning depth from monocular videos using direct methods[C]//Proceedings of the IEEEConference on Computer Vision and Pattern Recognition.2017:2022-2030. [45]MARVIN K,TERMOHLEN A,MIKOLAJCZYK J,et al.Self-supervised monocular depth estimation:solving the dynamic object problem by semantic guidance[C]//European Conference on Computer Vision.2020:582-600. [46]GUI Z,CAMPANHOLO V,AMBURS R,et al.PackNet-SfM:3D packing for self-supervised monocular depth estimation [J].arXiv:1905.02693,2019. |
[1] | HOU Lei, LIU Jinhuan, YU Xu, DU Junwei. Review of Graph Neural Networks [J]. Computer Science, 2024, 51(6): 282-298. |
[2] | LUO Jinyan, CHANG Jun, WU Peng, XU Yan, LU Zhongkui. FMCW Radar Human Behavior Recognition Based on Residual Network [J]. Computer Science, 2023, 50(11A): 220800247-6. |
[3] | LAI Teng-fei, ZHOU Hai-yang, YU Fei-hong. Real-time Extend Depth of Field Algorithm for Video Processing [J]. Computer Science, 2022, 49(6A): 314-318. |
[4] | HAN Hong-qi, RAN Ya-xin, ZHANG Yun-liang, GUI Jie, GAO Xiong, YI Meng-lin. Study on Cross-media Information Retrieval Based on Common Subspace Classification Learning [J]. Computer Science, 2022, 49(5): 33-42. |
[5] | ZHU Wei, YI Yao, WANG Tu-qiang, ZHENG Ya-yu. Fast Coding Unit Partition Algorithm for Depth Maps [J]. Computer Science, 2019, 46(10): 286-294. |
[6] | DU Jin, CHEN Yun-hua, ZHANG Ling, MAI Ying-chao. Energy-efficient Facial Expression Recognition Based on Improved Deep Residual Networks [J]. Computer Science, 2018, 45(9): 303-307. |
[7] | LIU Yang, QI Chun, YANG Jing-yi. 2D-to-3D Conversion Algorithm for Badminton Video [J]. Computer Science, 2018, 45(8): 63-69. |
[8] | LV Li-zhi and QIANG Yan. Medical CT Image Enhancement Algorithm Based on Laplacian Pyramid and Wavelet Transform [J]. Computer Science, 2016, 43(11): 300-303. |
[9] | WU Shao-qun YUAN Hong-xing AN Peng CHENG Pei-hong. Dense Depth Map Reconstruction via Image Guided Second-order Total Generalized Variation [J]. Computer Science, 2015, 42(7): 314-319. |
[10] | LI Xing,ZHAO Yao,LIN Chun-yu and YAO Chao. Depth Map Coding Based on Wavelet Inter-subband Coefficients Prediction [J]. Computer Science, 2014, 41(10): 134-138. |
|