Computer Science ›› 2025, Vol. 52 ›› Issue (6A): 240800156-7.doi: 10.11896/jsjkx.240800156
• Image Processing & Multimedia Technology • Previous Articles Next Articles
JIN Lu, LIU Mingkun, ZHANG Chunhong, CHEN Kefei, LUO Yaqiong, LI Bo
CLC Number:
[1]LUO H,JIANG W,FAN X,et al.Research progress of pedestrian re-identification based on deep learning [J].Acta Automatica Sinica,2019,45(11):2032-2049. [2]LIAO S,HU Y,ZHU X,et al.Person re-identification by local maximal occurrence representation and metric learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2015:2197-2206. [3]TAO D,JIN L,WANG Y,et al.Person reidentification by minimum classification error-based KISS metric learning[J].IEEE Transactions on Cybernetics,2014,45(2):242-252. [4]SU C,LI J,ZHAN G S,et al.Pose-driven deep convolutionalmodel for person re-identification[C]//Proceedings of the IEEE International Conference on Computer Vision.2017:3960-3969. [5]LUO H,JIANG W,FAN X,et al.Stnreid:Deep convolutional networks with pairwise spatial transformer networks for partial person re-identification[J].IEEE Transactions on Multimedia,2020,22(11):2905-2913. [6]ZHENG L,YANG Y,HAUPTMANNA G.Person re-identification:Past,present and future[J].arXiv:1610.02984,2016. [7]YAN C,PANG G,BAI X,et al.Beyond triplet loss:person re-identification with fine-grained difference-aware pairwise loss[J].IEEE Transactions on Multimedia,2021,24:1665-1677. [8]PAN X,LUO P,SHI J,et al.Two at once:Enhancing learning and generalization capacities via ibn-net[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:464-479. [9]HU J,SHEN L,SUNG.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:7132-7141. [10]DAI J,QI H,XIONG Y,et al.Deformable convolutional net-works[C]//Proceedings of the IEEE International Conference on Computer Vision.2017:764-773. [11]PENG P,TIAN Y,HUANG Y,et al.Discriminative spatial feature learning for person re-identification[C]//Proceedings of the 28th ACM International Conference on Multimedia.2020:274-283. [12]HOU Q,ZHOU D,FENG J.Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:13713-13722. [13]CHEN W,CHEN X,ZHANG J,et al.Beyond triplet loss:a deep quadruplet network for person re-identification[C]//Procee-dings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:403-412. [14]SZEGEDY C,VANHOUCKE V,IOFFES,et al.Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:2818-2826. [15]ZHENG L,SHEN L,TIAN L,et al.Scalable person re-identification:A benchmark[C]//Proceedings of the IEEE Internatio-nal Conference on Computer Vision.2015:1116-1124. [16]ZHENG Z,ZHENG L,YANG Y.Unlabeled samples generatedby gan improve the person re-identification baseline in vitro[C]//Proceedings of the IEEE International Conference on Computer Vision.2017:3754-3762. [17]SUN Y,ZHENG L,YANG Y,et al.Beyond part models:Person retrieval with refined part pooling(and a strong convolutional baseline)[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:480-496. [18]LUO H,JIANG W,FAN X,et al.Stnreid:Deep convolutional networks with pairwise spatial transformer networks for partial person re-identification[J].IEEE Transactions on Multimedia,2020,22(11):2905-2913. [19]SUN Y,XU Q,LI Y,et al.Perceive where to focus:Learning visibility-aware part-level features for partial person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:393-402. [20]SUN Y,CHENG C,ZHANG Y,et al.Circle loss:A unified perspective of pair similarity optimization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:6398-6407. [21]ZHOU K,YANG Y,CAVALLARO A,et al.Omni-scale feature learning for person re-identification[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:3702-3712. [22]WANG G,YANG S,LIU H,et al.High-order information matters:Learning relation and topology for occluded person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:6449-6458. [23]LUO H,GU Y,LIAO X,et al.Bag of tricks and a strong baseline for deep person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.2019. [24]CHEN Y,WANG H,SUN X,et al.Deep attention aware feature learning for person re-identification[J].Pattern Recognition,2022,126:108567. [25]KALAYEH M M,BASARAN E,GÖKMEN M,et al.Human semantic parsing for person re-identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:1062-1071. |
[1] | SHI Xincheng, WANG Baohui, YU Litao, DU Hui. Study on Segmentation Algorithm of Lower Limb Bone Anatomical Structure Based on 3D CTImages [J]. Computer Science, 2025, 52(6A): 240500119-9. |
[2] | LI Weirong, YIN Jibin. FB-TimesNet:An Improved Multimodal Emotion Recognition Method Based on TimesNet [J]. Computer Science, 2025, 52(6A): 240900046-8. |
[3] | XU Yutao, TANG Shouguo. Visual Question Answering Integrating Visual Common Sense Features and Gated Counting Module [J]. Computer Science, 2025, 52(6A): 240800086-7. |
[4] | WANG Rui, TANG Zhanjun. Multi-feature Fusion and Ensemble Learning-based Wind Turbine Blade Defect Detection Method [J]. Computer Science, 2025, 52(6A): 240900138-8. |
[5] | LI Mingjie, HU Yi, YI Zhengming. Flame Image Enhancement with Few Samples Based on Style Weight Modulation Technique [J]. Computer Science, 2025, 52(6A): 240500129-7. |
[6] | WANG Rong , ZOU Shuping, HAO Pengfei, GUO Jiawei, SHU Peng. Sand Dust Image Enhancement Method Based on Multi-cascaded Attention Interaction [J]. Computer Science, 2025, 52(6A): 240800048-7. |
[7] | ZHANG Yongyu, GUO Chenjuan, WEI Hanyue. Deep Learning Stock Price Probability Prediction Based on Multi-modal Feature Wavelet Decomposition [J]. Computer Science, 2025, 52(6A): 240600140-11. |
[8] | SHEN Xinyang, WANG Shanmin, SUN Yubao. Depression Recognition Based on Speech Corpus Alignment and Adaptive Fusion [J]. Computer Science, 2025, 52(6): 219-227. |
[9] | GUO Yecai, HU Xiaowei, MAO Xiangnan. Multi-scale Feature Fusion Residual Denoising Network Based on Cascade [J]. Computer Science, 2025, 52(6): 239-246. |
[10] | GENG Sheng, DING Weiping, JU Hengrong, HUANG Jiashuang, JIANG Shu, WANG Haipeng. FDiff-Fusion:Medical Image Diffusion Fusion Network Segmentation Model Driven Based onFuzzy Logic [J]. Computer Science, 2025, 52(6): 274-285. |
[11] | JIANG Wenwen, XIA Ying. Improved U-Net Multi-scale Feature Fusion Semantic Segmentation Network for RemoteSensing Images [J]. Computer Science, 2025, 52(5): 212-219. |
[12] | LI Xiwang, CAO Peisong, WU Yuying, GUO Shuming, SHE Wei. Study on Security Risk Relation Extraction Based on Multi-view IB [J]. Computer Science, 2025, 52(5): 330-336. |
[13] | DENG Ceyu, LI Duantengchuan, HU Yiren, WANG Xiaoguang, LI Zhifei. Joint Inter-word and Inter-sentence Multi-relationship Modeling for Review-basedRecommendation Algorithm [J]. Computer Science, 2025, 52(4): 119-128. |
[14] | YANG Jincai, YU Moyang, HU Man, XIAO Ming. Automatic Identification and Classification of Topical Discourse Markers [J]. Computer Science, 2025, 52(4): 255-261. |
[15] | LI Xiaolan, MA Yong. Study on Lightweight Flame Detection Algorithm with Progressive Adaptive Feature Fusion [J]. Computer Science, 2025, 52(4): 64-73. |
|