Computer Science ›› 2025, Vol. 52 ›› Issue (8): 118-126.doi: 10.11896/jsjkx.241000186
• Database & Big Data 0 Data Science • Previous Articles Next Articles
GUO Husheng1,2, ZHANG Xufei1, SUN Yujie1, WANG Wenjian1,2
CLC Number:
[1]BRAMBILLA M,GASPARINI M.Brand community analysison social networks using graph representation learning[C]//Proceedings of the 34th ACM SIGAPP Symposium on Applied Computing.2019:2060-2069. [2]ZHANG S,ZHOU D,YILDIRIM M Y,et al.Hidden:Hierarchical dense subgraph detection with application to financial fraud detection[C]//Proceedings of the 2017 SIAM International Conference on Data Mining.Society for Industrial and Applied Mathematics.2017:570-578. [3]WANG X,MA Y,WANG Y,et al.Traffic flow prediction viaspatial temporal graph neural network[C]//Proceedings of the Web Conference 2020.2020:1082-1092. [4]SCARSELLI F,GORI M,TSOI A C,et al.The graph neural network model[J].IEEE Transactions on Neural Networks,2008,20(1):61-80. [5]MICHELI A.Neural network for graphs:A contextual con-structive approach[J].IEEE Transactions on Neural Networks,2009,20(3):498-511. [6]MA S,LIU J W,ZUO X.Survey on Graph Neural Network[J].Journal of Computer Research and Development,2022,59(1):47-80. [7]BHAGAT S,CORMODE G,MUTHUKRISHNAN S.Nodeclassification in social networks[J].Social Network Data Analytics,2011:115-148. [8]JI S Y,WEI Y X,DAI Q H,et al.Efficient hypergraph neural network on million-level data[J].Scientia Sinica Informationis,2024,54(4):853-871. [9]HASAN M A,ZAKI M J.A survey of link prediction in social networks[J].Social Network Data Analytics,2011:243-275. [10]NI Q J,PENG W Q,ZHANG Z Z,et al.Spatial-Temporal Graph Neural Network for Traffic Flow Prediction Based on InformationEnhanced Transmission[J].Journal of Computer Research and Development,2022,59(2):282-293. [11]GUO J Y,LI R H,ZHANG Y,et al.Graph neural networkbased anomaly detection in dynamic networks[J].Journal of Software,2020,31(3):748-762. [12]HAMILTON W,YING Z,LESKOVEC J.Inductive representation learning on large graphs[C]//Processing of the Advances in Neural Information Processing Systems.2017:1025-1035. [13]ZHOU J,CUI G,HU S,et al.Graph neural networks:A review of methods and applications[J].AI Open,2020,1:57-81. [14]PEROZZI B,AL-RFOU R,SKIENA S.Deepwalk:Online lear-ning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2014:701-710. [15]TANG J,QU M,WANG M,et al.Line:Large-scale information network embedding[C]//Proceedings of the 24th International Conference on World Wide Web.2015:1067-1077. [16]GROVER A,LESKOVEC J.node2vec:Scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Dining.2016:855-864. [17]RIBEIRO L F R,SAVERESE P H P,FIGUEIREDO D R.struc2vec:Learning node representations from structural identity[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2017:385-394. [18]PEROZZI B,KULKARNI V,CHEN H,et al.Don't walk,skip! online learning of multi-scale network embeddings[C]//Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017.2017:258-265. [19]KIPF T N,WELLING M.Semi-supervised classification withgraph convolutional networks[J].arXiv:1609.02907,2016. [20]VELIČKOVIĆ P,CUCURULL G,CASANOVA A,et al.Graph attention networks[C]//Proceedings of the International Conference on Learning Representations.2018. [21]XU K,HU W,LESKOVEC J,et al.How powerful are graphneural networks?[C]//Proceeding of the International Conference on Learning Representations.2019. [22]SKARDING J,GABRYS B,MUSIAL K.Foundations and modeling of dynamic networks using dynamic graph neural networks:A survey[J].IEEE Access,2021,9:79143-79168. [23]ZHOU L,YANG Y,REN X,et al.Dynamic network embedding by modeling triadic closure process[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2018:571-578. [24]ZUO Y,LIU G,LIN H,et al.Embedding temporal network via neighborhood formation[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2018:2857-2866. [25]GERS F A,SCHRAUDOLPH N N,SCHMIDHUBER J.Learning precise timing with LSTM recurrent networks[J].Journal of Machine Learning Research,2002,3(Aug):115-143. [26]WANG J,JIN Y,SONG G,et al.EPNE:Evolutionary patternpreserving network embedding[C]//Proceedings of the 24th European Conference on Artificial Intelligence.2020. [27]PAREJA A,DOMENICONI G,CHEN J,et al.Evolvegcn:Evolving graph convolutional networks for dynamic graphs[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:5363-5370. [28]SANKAR A,WU Y,GOU L,et al.Dysat:Deep neural representation learning on dynamic graphs via self-attention networks[C]//Proceedings of the 13th International Conference on Web Search and Data Mining.2020:519-527. [29]TRIVEDI R,FARAJTABAR M,BISWAL P,et al.Dyrep:Learning representations over dynamic graphs[C]//Proceedings of the International Conference on Learning Representations.2019. [30]DENG S,RANGWALA H,NING Y.Learning dynamic context graphs for predicting social events[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Disco-very and Data Mining.2019:1007-1016. [31]MA Y,GUO Z,REN Z,et al.Streaming graph neural networks[C]//Proceedings of the 43rd international ACM SIGIR Confe-rence on Research and Development in Information Retrieval.2020:719-728. [32]YAN S,XIONG Y,LIN D.Spatial temporal graph convolutional networks for skeleton-based action recognition[C]//Procee-dings of the AAAI Conference on Artificial Intelligence.2018. [33]LIU M,GAO H,JI S.Towards deeper graph neural networks[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2020:338-348. [34]ZHANG T,LIAO B,YU J,et al.Benchmark testing and analysis of node classification tasks in graph neural networks [J].Computer Science,2024,51(4):132-150. [35]GASTEIGER J,BOJCHEVSKI A,GÜNNEMANN S.Predictthen Propagate:Graph Neural Networks meet Personalized PageRank[C]//Proceedings of the International Conference on Learning Representations.2018. [36]CHIANG W L,LIU X,SI S,et al.Cluster-gcn:An efficient algorithm for training deep and large graph convolutional networks[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2019:257-266. [37]WU F,SOUZA A,ZHANG T,et al.Simplifying graph convolutional networks[C]//Proceedings of the International Confe-rence on Machine Learning.2019:6861-6871. [38]DU J,ZHANG S H,WU G H,et al.Topology adaptive graph convolutional networks[J].arXiv:1710.10370,2017. [39]WANG J,SONG G,WU Y,et al.Streaming Graph Neural Networks via Continual Learning[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management(CIKM'20).2020:1515-1524. |
[1] | LUO Xuyang, TAN Zhiyi. Knowledge-aware Graph Refinement Network for Recommendation [J]. Computer Science, 2025, 52(7): 103-109. |
[2] | HAO Jiahui, WAN Yuan, ZHANG Yuhang. Research on Node Learning of Graph Neural Networks Fusing Positional and StructuralInformation [J]. Computer Science, 2025, 52(7): 110-118. |
[3] | LIU Chengzhuang, ZHAI Sulan, LIU Haiqing, WANG Kunpeng. Weakly-aligned RGBT Salient Object Detection Based on Multi-modal Feature Alignment [J]. Computer Science, 2025, 52(7): 142-150. |
[4] | XU Yongwei, REN Haopan, WANG Pengfei. Object Detection Algorithm Based on YOLOv8 Enhancement and Its Application Norms [J]. Computer Science, 2025, 52(7): 189-200. |
[5] | FANG Chunying, HE Yuankun, WU Anxin. Emotion Recognition Based on Brain Network Connectivity and EEG Microstates [J]. Computer Science, 2025, 52(7): 201-209. |
[6] | JIANG Kun, ZHAO Zhengpeng, PU Yuanyuan, HUANG Jian, GU Jinjing, XU Dan. Cross-modal Hypergraph Optimisation Learning for Multimodal Sentiment Analysis [J]. Computer Science, 2025, 52(7): 210-217. |
[7] | LI Weirong, YIN Jibin. FB-TimesNet:An Improved Multimodal Emotion Recognition Method Based on TimesNet [J]. Computer Science, 2025, 52(6A): 240900046-8. |
[8] | XU Yutao, TANG Shouguo. Visual Question Answering Integrating Visual Common Sense Features and Gated Counting Module [J]. Computer Science, 2025, 52(6A): 240800086-7. |
[9] | WANG Rui, TANG Zhanjun. Multi-feature Fusion and Ensemble Learning-based Wind Turbine Blade Defect Detection Method [J]. Computer Science, 2025, 52(6A): 240900138-8. |
[10] | LI Mingjie, HU Yi, YI Zhengming. Flame Image Enhancement with Few Samples Based on Style Weight Modulation Technique [J]. Computer Science, 2025, 52(6A): 240500129-7. |
[11] | WANG Rong , ZOU Shuping, HAO Pengfei, GUO Jiawei, SHU Peng. Sand Dust Image Enhancement Method Based on Multi-cascaded Attention Interaction [J]. Computer Science, 2025, 52(6A): 240800048-7. |
[12] | JIN Lu, LIU Mingkun, ZHANG Chunhong, CHEN Kefei, LUO Yaqiong, LI Bo. Pedestrian Re-identification Based on Spatial Transformation and Multi-scale Feature Fusion [J]. Computer Science, 2025, 52(6A): 240800156-7. |
[13] | SHI Xincheng, WANG Baohui, YU Litao, DU Hui. Study on Segmentation Algorithm of Lower Limb Bone Anatomical Structure Based on 3D CTImages [J]. Computer Science, 2025, 52(6A): 240500119-9. |
[14] | ZHANG Yongyu, GUO Chenjuan, WEI Hanyue. Deep Learning Stock Price Probability Prediction Based on Multi-modal Feature Wavelet Decomposition [J]. Computer Science, 2025, 52(6A): 240600140-11. |
[15] | WANG Jinghong, WU Zhibing, WANG Xizhao, LI Haokang. Semantic-aware Heterogeneous Graph Attention Network Based on Multi-view RepresentationLearning [J]. Computer Science, 2025, 52(6): 167-178. |
|