Computer Science ›› 2026, Vol. 53 ›› Issue (1): 128-140.doi: 10.11896/jsjkx.241100047
• Computer Graphics & Multimedia • Previous Articles Next Articles
XUE Jingyan1, XIA Jianan1, HUO Ruili2, LIU Jie1, ZHOU Xuezhong1
CLC Number:
| [1]SOMMER A,TAYLOR H R,RAVILLA T D,et al.Challenges of ophthalmic care in the developing world[J].Jama Ophthalmology,2014,132(5):640-644. [2]SPAIDE R F,FUJIMOTO J G,WAHEED N K,et al.Opticalcoherence tomography angiography[J].Progress in Retinal and Eye Research,2018,64:1-55. [3]BILLE J F.High resolution imaging in microscopy and ophthalmology:new frontiers in biomedical optics[M].Springer,2019. [4]REBOLLEDA G,DIEZ-ALVAREZ L,CASADO A,et al.OCT:new perspectives in neuro-ophthalmology[J].Saudi Journal of Ophthalmology,2015,29(1):9-25. [5]DE CARLO T E,ROMANO A,WAHEED N K,et al.A review of optical coherence tomography angiography(OCTA)[J].International Journal of Retina and Vitreous,2015,1:1-15. [6]LONDON A,BENHAR I,SCHWARTZ M.The retina as a window to the brain-from eye research to CNS disorders[J].Nature Reviews Neurology,2013,9(1):44-53. [7]WU J,PHILIP A M,PODKOWINSKI D,et al.MultivendorSpectral-Domain Optical Coherence Tomography Dataset,Observer Annotation Performance Evaluation,and Standardized Evaluation Framework for Intraretinal Cystoid Fluid Segmentation[J].Journal of Ophthalmology,2016,2016:3898750. [8]CHIU S J,ALLINGHAM M J,METTU P S,et al.Kernel regression based segmentation of optical coherence tomography images with diabetic macular edema[J].Biomed Opt Express,2015,6(4):1172-1194. [9]DIAZ M,NOVO J,CUTRIN P,et al.Automatic segmentationof the foveal avascular zone in ophthalmological OCT-A images[J].PLoS One,2019,14(2):e0212364. [10]MA Y H,HAO H Y,XIE J Y,et al.ROSE:A Retinal OCT-Angiography Vessel Segmentation Dataset and New Model[J].IEEE Transactions on Medical Imaging,2021,40(3):928-939. [11]LI M C,ZHANG Y H,JI Z X,et al.Ipn-v2 and octa-500:Methodology and dataset for retinal image segmentation[J].arXiv:2012,07261,2020. [12]CHIU S J,IZATT J A,O’CONNELL R V,et al.Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images[J].Investigative Ophthalmology & Visual Science,2012,53(1):53-61. [13]FARSIU S,CHIU S J,O’CONNELL R V,et al.Quantitative classification of eyes with and without intermediate age-related macular degeneration using optical coherence tomography[J].Ophthalmology,2014,121(1):162-172. [14]KERMANY D S,GOLDBAUM M,CAI W,et al.IdentifyingMedical Diagnoses and Treatable Diseases by Image-Based Deep Learning[J].Cell,2018,172(5):1122-1131. [15]BOGUNOVIC H,VENHUIZEN F,KLIMSCHA S,et al.RE-TOUCH:The Retinal OCT Fluid Detection and Segmentation Benchmark and Challenge[J].IEEE Transactions on Medical Imaging,2019,38(8):1858-1874. [16]GAO K,NIU S J,JI Z X,et al.Double-branched and area-constraint fully convolutional networks for automated serous retinal detachment segmentation in SD-OCT images[J].Computer Methods and Programs in Biomedicine,2019,176:69-80. [17]YANG J,JI Z X,NIU S J,et al.RMPPNet:residual multiple pyramid pooling network for subretinal fluid segmentation in SD-OCT images[J].OSA Continuum,2020,3(7):1751-1769. [18]PAWAN S,SANKAR R,JAIN A,et al.Capsule Network-basedarchitectures for the segmentation of sub-retinal serous fluid in optical coherence tomography images of central serous chorioretinopathy[J].Medical & Biological Engineering & Computing,2021,59(6):1245-1259. [19]KULYABIN M,ZHDANOV A,NIKIFOROVA A,et al.OCTDL:Optical Coherence Tomography Dataset for Image-Based Deep Learning Methods[J].Scientific Data,2024,11(1):365. [20]WANG Y F,SHEN Y Q,YUAN M,et al.A deep learning-based quality assessment and segmentation system with a large-scale benchmark dataset for optical coherence tomographic angiography image[J].arXiv:210710476,2021. [21]AGARWAL A,JANARTHANAM J B,RAMAN R,et al.The Foveal Avascular Zone Image Database(FAZID)[DB/OL].https://www.openicpsr.org/openicpsr/project/117543/version/V2/view. [22]GUO M L,ZHAO M,CHEONG A M Y,et al.Can deep lear-ning improve the automatic segmentation of deep foveal avascular zone in optical coherence tomography angiography?[J].Biomedical Signal Processing and Control,2021,66:102456. [23]XUE J,FENG Z,ZENG L,et al.Soul:An OCTA dataset based on Human Machine Collaborative Annotation Framework[J].Scientific Data,2024,11(1):838. [24]SCHMITT J M.Optical coherence tomography(OCT):a review[J].IEEE Journal of Selected Topics in Quantum Electronics,1999,5(4):1205-1215. [25]FANG L,CUNEFARE D,WANG C,et al.Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search[J].Biomed Opt Express,2017,8(5):2732-2744. [26]PEKALA M,JOSHI N,LIU T Y A,et al.Deep learning based retinal OCT segmentation[J].Computers in Biology and Me-dincine,2019,114:103445. [27]HU K,SHEN B W,ZHANG Y,et al.Automatic segmentation of retinal layer boundaries in OCT images using multiscale con-volutional neural network and graph search[J].Neurocompu-ting,2019,365:302-313. [28]TAN Y,SHEN W D,WU M Y,et al.Retinal Layer Segmentation in OCT Images With Boundary Regression and Feature Polarization[J].IEEE Transactions on Medical Imaging,2024,43(2):686-700. [29]LIU H,WEI D,LU D,et al.Simultaneous alignment and surface regression using hybrid 2D-3D networks for 3D coherent layer segmentation of retinal OCT images with full and sparse annotations[J].Medical Image Analysis,2024,91:103019. [30]WALDSTEIN S M,PHILIP A M,LEITNER R,et al.Correlation of 3-dimensionally quantified intraretinal and subretinal fluid with visual acuity in neovascular age-related macular degene-ration[J].Jama Ophthalmology,2016,134(2):182-190. [31]HE X X,FANG L Y,TAN M K,et al.Intra- and Inter-SliceContrastive Learning for Point Supervised OCT Fluid Segmentation[J].IEEE Transactions on Image Processing,2022,31:1870-1881. [32]GOMARIZ A,LU H,LI Y Y,et al.Unsupervised domain adaptation with contrastive learning for OCT segmentation[C]//Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention.2022. [33]WANG Y Q,DAN R L,LUO S,et al.AMSC-Net:Anatomy and multi-label semantic consistency network for semi-supervised fluid segmentation in retinal OCT[J].Expert Systems with Applications,2024,249:123496.1-123496.14. [34]TIAN J,VARGA B,TATRAI E,et al.Performance evaluation of automated segmentation software on optical coherence tomography volume data[J].J Biophotonics,2016,9(5):478-489. [35]HE Y F,CARASS A,LIU Y H,et al.Structured layer surface segmentation for retina OCT using fully convolutional regression networks[J].Medical Image Analysis,2021,68:101856. [36]HE Y F,CARASS A,SOLOMON S D,et al.Retinal layer parcellation of optical coherence tomography images:Data resource for multiple sclerosis and healthy controls[J].Data Brief,2019,22:601-604. [37]MAN N,GUO S,YIU K F C,et al.Multi-layer segmentation of retina OCT images via advanced U-net architecture[J].Neurocomputing,2023,515:185-200. [38]FARSIU S,CHIU S J,O’CONNELL R V,et al.Quantitative Classification of Eyes with and without Intermediate Age-rela-ted Macular Degeneration Using Optical Coherence Tomography[J].Ophthalmology,2014,121(1):162-172. [39]ALSAIH K,YUSOFF M Z,TANG T B,et al.Deep learning architectures analysis for age-related macular degeneration segmentation on optical coherence tomography scans[J].Comput Methods Programs Biomed,2020,195:105566. [40]LIU X M,WANG S C,ZHANG Y,et al.Automatic fluid segmentation in retinal optical coherence tomography images using attention based deep learning[J].Neurocomputing,2021,452:576-591. [41]LI X,NIU S,GAO X,et al.Self-training adversarial learning for cross-domain retinal OCT fluid segmentation[J].Computers in Biology and Medicine,2023,155:106650. [42]AWAIS M,MÜLLER H,TANG T B,et al.Classification of sd-oct images using a deep learning approach[C]//Proceedings of the 2017 IEEE International Conference on Signal and Image Processing Applications.2017. [43]SAINI D J B,SIVAKAMI R,VENKATESH R,et al.Convolution neural network model for predicting various lesion-based diseases in diabetic macula edema in optical coherence tomography images[J].Biomedical Signal Processing and Control,2023,86(B):105180. [44]TREDER M,LAUERMANN J L,ETER N.Automated detection of exudative age-related macular degeneration in spectral domain optical coherence tomography using deep learning[J].Graefe’s Archive for Clinical and Experimental Ophthalmology,2018,256(2):259-265. [45]MOTOZAWA N,AN G,TAKAGI S,et al.Optical CoherenceTomography-Based Deep-Learning Models for Classifying Normal and Age-Related Macular Degeneration and Exudative and Non-Exudative Age-Related Macular Degeneration Changes[J].Ophthalmology and Therapy,2019,8(4):527-539. [46]RONG Y,XIANG D,ZHU W,et al.Surrogate-Assisted Retinal OCT Image Classification Based on Convolutional Neural Networks[J].IEEE Journal of Biomedical and Health Informatics,2019,23(1):253-263. [47]THOMPSON A C,JAMMAL A A,BERCHUCK S I,et al.Assessment of a Segmentation-Free Deep Learning Algorithm for Diagnosing Glaucoma From Optical Coherence Tomography Scans[J].JAMA Ophthalmology,2020,138(4):333-339. [48]RAN A R,CHEUNG C Y,WANG X,et al.Detection of glaucomatous optic neuropathy with spectral-domain optical coherence tomography:a retrospective training and validation deep-lear-ning analysis[J].The Lancet Digital Health,2019,1(4):e172-e182. [49]RASTI R,RABBANI H,MEHRIDEHNAVI A,et al.Macular OCT Classification Using a Multi-Scale Convolutional Neural Network Ensemble[J].IEEE Transactions on Medical Imaging,2018,37(4):1024-1034. [50]MITTAL P,BHATNAGAR C.Detection of DME by Classification and Segmentation Using OCT Images[J].Webology,2022,19(1):601-612. [51]SERENER A S S.Dry and wet age-related macular degeneration classification using oct images and deep learning[C]//2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science(EBBT).2019:1-4. [52]XU Z,WANG W,YANG J,et al.Automated diagnoses of age-related macular degeneration and polypoidal choroidal vasculopathy using bi-modal deep convolutional neural networks[J].The British Journal of Ophthalmology,2021,105(4):561-566. [53]SOTOUDEH-PAIMA S,JODEIRI A,HAJIZADEH F,et al.Multi-scale convolutional neural network for automated AMD classification using retinal OCT images[J].Computers in Biology and Medicine,2022,144:105368. [54]HAMID L,ELNOKRASHY A,ABDELHAY E H,et al.A deep learning LSTM-based approach for AMD classification using OCT images[J].Neural Computing and Applications,2024,36(31):19531-19547. [55]CHAN Y M,NG E Y K,JAHMUNAH V,et al.Automated detection of glaucoma using optical coherence tomography angiogram images[J].Computers in Biology and Meicine,2019,115:103483. [56]SCHOTTENHAMML J,WURFL T,MARDIN S,et al.Glaucoma classification in 3×3 mm en face macular scans using deep learning in a different plexus[J].Biomed Opt Express,2021,12(12):7434-7444. [57]SUNIJA A P,GOPI V P,PALANISAMY P.Redundancy re-duced depthwise separable convolution for glaucoma classification using OCT images[J].Biomedical Signal Processing and Control,2022,71(B):103192. [58]YANG K O,LEE J M,SHIN Y,et al.Diagnosis of Glaucoma Based on Few-Shot Learning with Wide-Field Optical Coherence Tomography Angiography[J].Biomedicines,2024,12(4):741. [59]LI Q,ZHU X R,SUN G,et al.Diagnosing Diabetic Retinopathy in OCTA Images Based on Multilevel Information Fusion Using a Deep Learning Framework[J].Computational and Mathema-tical Methods in Medicine,2022,2022:4316507. [60]HOU J L,XIAO F,XU J L,et al.Deep-OCTA:ensemble deep learning approaches for diabetic retinopathy analysis on OCTA images[M]//MICCAI Challenge on Mitosis Domain Generalization.Springer,2022:74-87. [61]EBRAHIMI B,LE D,ABTAHI M,et al.Optimizing the OCTA layer fusion option for deep learning classification of diabetic retinopathy[J].Biomed Opt Express,2023,14(9):4713-4724. [62]BIDWAI P,GITE S,PRADHAN B,et al.Harnessing deeplearning for detection of diabetic retinopathy in geriatric group using optical coherence tomography angiography-OCTA:A promising approach[J].MethodsX,2024,13:102910. [63]YOO T K,CHOI J Y,KIM H K.Feasibility study to improve deep learning in OCT diagnosis of rare retinal diseases with few-shot classification[J].Medical & Biological Engineering & Computing,2021,59(2):401-415. [64]VALI M,NAZARI B,SADRI S,et al.CNV-Net:Segmentation,Classification and Activity Score Measurement of Choroidal Neovascularization Using Optical Coherence Tomography Angiography[J].Diagnostics,2023,13(7):1309. [65]WANG S L,YIN Y L,CAO G B,et al.Hierarchical retinalblood vessel segmentation based on feature and ensemble learning[J].Neurocomputing,2015,149:708-717. [66]GU Z,CHENG J,FU H,et al.CE-Net:Context Encoder Network for 2D Medical Image Segmentation[J].IEEE Transactions on Medical Imaging,2019,38(10):2281-2292. [67]LI Q,FENG B,XIE L,et al.A Cross-Modality Learning Ap-proach for Vessel Segmentation in Retinal Images[J].IEEE Transactions on Medical Imaging,2016,35(1):109-118. [68]LI M C,CHEN Y R,JI Z X,et al.Image Projection Network:3D to 2D Image Segmentation in OCTA Images[J].IEEE Transactions on Medical Imaging,2020,39(11):3343-3354. [69]TAKASE N,NOZAKI M,KATO A,et al.Enlargement of foveal avascular zone in diabetic eyes evaluated by en face optical coherence tomography angiography[J].Retina,2015,35(11):2377-2383. [70]MIRSHAHI R,ANVARI P,RIAZI-ESFAHANI H,et al.Foveal avascular zone segmentation in optical coherence tomography angiography images using a deep learning approach[J].Scienti-fic Reports,2021,11(1):1031. [71]GUO Y K,HORMEL T T,GAO L Q,et al.Quantification of Nonperfusion Area in Montaged Widefield OCT Angiography Using Deep Learning in Diabetic Retinopathy[J].Ophthalmology Science,2021,1(2):100027. [72]GUO Y,HORMEL T T,GAO M,et al.Multi-Plexus Nonperfusion Area Segmentation in Widefield OCT Angiography Using a Deep Convolutional Neural Network[J].Translational Vision Science & Technology,2024,13(7):15. [73]NAGASATO D,TABUCHI H,MASUMOTO H,et al.Auto-mated detection of a nonperfusion area caused by retinal vein occlusion in optical coherence tomography angiography images using deep learning[J].PLoS One,2019,14(11):e0223965. [74]CHEN Z,XIONG Y,WEI H,et al.Dual-consistency semi-supervision combined with self-supervision for vessel segmentation in retinal OCTA images[J].Biomed Opt Express,2022,13(5):2824-2834. [75]TAN X,CHEN X,MENG Q,et al.OCT(2)Former:A retinal OCT-angiography vessel segmentation transformer[J].Comput Methods Programs Biomed,2023,233:107454. [76]GIARRATANO Y,BIANCHI E,GRAY C,et al.AutomatedSegmentation of Optical Coherence Tomography Angiography Images:Benchmark Data and Clinically Relevant Metrics[J].Translational Vision Science & Technology,2020,9(13):5. [77]SHEN H L,TANG Z,LI Y J,et al.HAIC-NET:Semi-supervised OCTA vessel segmentation with self-supervised pretext task and dual consistency training[J].Pattern Recognition,2024,151:110429. [78]LIANG Z,ZHANG J,AN C.Foveal Avascular Zone Segmentation of Octa Images Using Deep Learning Approach with Unsupervised Vessel Segmentation[C]//2021 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP).2021:1200-1204. [79]GUO M,ZHAO M,CHEONG A M Y,et al.Automatic quantification of superficial foveal avascular zone in optical coherence tomography angiography implemented with deep learning[J].Visual Computing for Inustry,Biomedicine,and Art,2019,2(1):21. [80]LIN L,WANG Z H,WU J W,et al.Bsda-net:A boundary shape and distance aware joint learning framework for segmenting and classifying octa images[C]//Proceedings of the Medical Image Computing and Computer Assisted Intervention.2021. [81]LI W,ZHANG H,LI F,et al.RPS-Net:An effective retinal image projection segmentation network for retinal vessels and foveal avascular zone based on OCTA data[J].Medical Physics,2022,49(6):3830-3844. [82]KREITNER L,PAETZOLD J C,RAUCH N,et al.SyntheticOptical Coherence Tomography Angiographs for Detailed Retinal Vessel Segmentation Without Human Annotations[J].IEEE Transactions on Medical Imaging,2024,43(6):2061-2073. [83]WANG J,HORMEL T T,GAO L,et al.Automated diagnosis and segmentation of choroidal neovascularization in OCT angiography using deep learning[J].Biomed Opt Express,2020,11(2):927-944. [84]FENG W,DUAN M H,WANG B J,et al.Automated segmentation of choroidal neovascularization on optical coherence tomography angiography images of neovascular age-related macular degeneration patients based on deep learning[J].Journal of Big Data,2023,10(1):111. [85]LU Y,SIMONETT J M,WANG J,et al.Evaluation of Automatically Quantified Foveal Avascular Zone Metrics for Diagnosis of Diabetic Retinopathy Using Optical Coherence Tomography Angiography[J].Investigative Ophthalmology & Visual Science,2018,59(6):2212-2221. [86]ABDELSALAM M M,ZAHRAN M A.A Novel Approach of Diabetic Retinopathy Early Detection Based on Multifractal Geometry Analysis for OCTA Macular Images Using Support Vector Machine[J].IEEE Access,2021,9:22844-22858. [87]KEEL S,WU J,LEE P Y,et al.Visualizing Deep Learning Mo-dels for the Detection of Referable Diabetic Retinopathy and Glaucoma[J].JAMA Ophthalmol,2019,137(3):288-292. [88]KIRILLOV A,MINTUN E,RAVI N,et al.Segment anything[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2023. [89]MA J,HE Y,LI F,et al.Segment anything in medical images[J].Nature Communications,2024,15(1):654. [90]DENG G Y,ZOU K,REN K,et al.SAM-U:Multi-box prompts triggered uncertainty estimation for reliable SAM in medical image[C]//Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention.Springer,2023. [91]QIU Z X,HU Y,LI H,et al.Learnable ophthalmology sam[J].arXiv:230413425,2023. |
| [1] | HUANG Miaomiao, WANG Huiying, WANG Meixia, WANG Yejiang , ZHAO Yuhai. Review of Graph Embedding Learning Research:From Simple Graph to Complex Graph [J]. Computer Science, 2026, 53(1): 58-76. |
| [2] | WANG Cheng, JIN Cheng. KAN-based Unsupervised Multivariate Time Series Anomaly Detection Network [J]. Computer Science, 2026, 53(1): 89-96. |
| [3] | ZHOU Bingquan, JIANG Jie, CHEN Jiangmin, ZHAN Lixin. EvR-DETR:Event-RGB Fusion for Lightweight End-to-End Object Detection [J]. Computer Science, 2026, 53(1): 153-162. |
| [4] | LIU Wei, XU Yong, FANG Juan, LI Cheng, ZHU Yujun, FANG Qun, HE Xin. Multimodal Air-writing Gesture Recognition Based on Radar-Vision Fusion [J]. Computer Science, 2025, 52(9): 259-268. |
| [5] | YIN Shi, SHI Zhenyang, WU Menglin, CAI Jinyan, YU De. Deep Learning-based Kidney Segmentation in Ultrasound Imaging:Current Trends and Challenges [J]. Computer Science, 2025, 52(9): 16-24. |
| [6] | ZENG Lili, XIA Jianan, LI Shaowen, JING Maike, ZHAO Huihui, ZHOU Xuezhong. M2T-Net:Cross-task Transfer Learning Tongue Diagnosis Method Based on Multi-source Data [J]. Computer Science, 2025, 52(9): 47-53. |
| [7] | LI Yaru, WANG Qianqian, CHE Chao, ZHU Deheng. Graph-based Compound-Protein Interaction Prediction with Drug Substructures and Protein 3D Information [J]. Computer Science, 2025, 52(9): 71-79. |
| [8] | LUO Chi, LU Lingyun, LIU Fei. Partial Differential Equation Solving Method Based on Locally Enhanced Fourier NeuralOperators [J]. Computer Science, 2025, 52(9): 144-151. |
| [9] | LIU Leyuan, CHEN Gege, WU Wei, WANG Yong, ZHOU Fan. Survey of Data Classification and Grading Studies [J]. Computer Science, 2025, 52(9): 195-211. |
| [10] | TANG Boyuan, LI Qi. Review on Application of Spatial-Temporal Graph Neural Network in PM2.5 ConcentrationForecasting [J]. Computer Science, 2025, 52(8): 71-85. |
| [11] | LIU Zhengyu, ZHANG Fan, QI Xiaofeng, GAO Yanzhao, SONG Yijing, FAN Wang. Review of Research on Deep Learning Compiler [J]. Computer Science, 2025, 52(8): 29-44. |
| [12] | ZHENG Cheng, YANG Nan. Aspect-based Sentiment Analysis Based on Syntax,Semantics and Affective Knowledge [J]. Computer Science, 2025, 52(7): 218-225. |
| [13] | FAN Xing, ZHOU Xiaohang, ZHANG Ning. Review on Methods and Applications of Short Text Similarity Measurement in Social Media Platforms [J]. Computer Science, 2025, 52(6A): 240400206-8. |
| [14] | YANG Jixiang, JIANG Huiping, WANG Sen, MA Xuan. Research Progress and Challenges in Forest Fire Risk Prediction [J]. Computer Science, 2025, 52(6A): 240400177-8. |
| [15] | WANG Jiamin, WU Wenhong, NIU Hengmao, SHI Bao, WU Nier, HAO Xu, ZHANG Chao, FU Rongsheng. Review of Concrete Defect Detection Methods Based on Deep Learning [J]. Computer Science, 2025, 52(6A): 240900137-12. |
|
||