Computer Science ›› 2026, Vol. 53 ›› Issue (1): 97-103.doi: 10.11896/jsjkx.250300132
• Database & Big Data & Data Science • Previous Articles Next Articles
LIU Hongjian, ZOU Danping, LI Ping
CLC Number:
| [1]GAO J,SUN C,ZHAO H,et al.Vectornet:Encoding hd maps and agent dynamics from vectorized representation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:11525-11533. [2]YU B,YIN H,ZHU Z.Spatio-temporal graph convolutional networks:A deep learning framework for traffic forecasting[J].arXiv:1709.04875,2017. [3]易虹宇,杨智宇,杜力.基于变分自动编码器的车辆轨迹预测研究[J].重庆工商大学学报(自然科学版),2024,41(2):60-65. [4]DAAMEN W,HOOGENDOORN S P.Experimental research of pedestrian walking behavior[J].Transportation Research Record,2003,1828(1):20-30. [5]ALAHI A,GOEL K,RAMANATHAN V,et al.Social lstm:Human trajectory prediction in crowded spaces[C]//Procee-dings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:961-971. [6]GUPTA A,JOHNSON J,FEI-FEI L,et al.Social gan:Socially acceptable trajectories with generative adversarial networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:2255-2264. [7]MOHAMED A,QIAN K,ELHOSEINY M,et al.Social-stgcnn:A social spatio-temporal graph convolutional neural network for human trajectory prediction[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:14424-14432. [8]HOU L,LIU J,YU X,et al.Review of graph neural network[J].Computer Science,2024,51(6):282-298. [9]CAO J,CHEN Y,LI H,et al.A survey of pedestrian trajectory prediction based on graph neural network[J].Computer Engineering & Science,2023,45(6):1040-1053. [10]SHI L,WANG L,LONG C,et al.SGCN:Sparse graph convolution network for pedestrian trajectory prediction[C]//Procee-dings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:8994-9003. [11]ZHANG X,ANGELOUDIS P,DEMIRIS Y.Dual-branch spatio-temporal graph neural networks for pedestrian trajectory prediction[J].Pattern Recognition,2023,142:109633. [12]VELICKOVIC P,CUCURULL G,CASANOVA A,et al.Graph attention networks[J].arXiv:1710.10903,2017. [13]ZHAO H,WANG Y,DUAN J,et al.Multivariate time-seriesanomaly detection via graph attention network[C]//2020 IEEE International Conference on Data Mining(ICDM).IEEE,2020:841-850. [14]VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[J].arXiv:1706.03762,2017. [15]DOSOVITSKIY A.An image is worth 16×16 words:Transfor-mers for image recognition at scale[J].arXiv:2010.11929,2020. [16]BRODY S,ALON U,YAHAV E.How attentive are graph attention networks?[J].arXiv:2105.14491,2021. [17]BUSBRIDGE D,SHERBURN D,CAVALLO P,et al.Relational graph attention networks[J].arXiv:1904.05811,2019. [18]SHAO K,ZHANG Y,WEN Y,et al.DTI-HETA:prediction of drug-target interactions based on GCN and GAT on heterogeneous graph[J].Briefings in Bioinformatics,2022,23(3):bbac109. [19]WANG X,HE X,CAO Y,et al.Kgat:Knowledge graph attention networkfor recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Disco-very & Data Mining.2019:950-958. [20]LERNER A,CHRYSANTHOU Y,LISCHINSKI D.Crowds by example[C]//Computer graphics forum.Oxford,UK:Blackwell Publishing Ltd,2007:655-664. [21]PELLEGRINI S,ESS A,SCHINDLER K,et al.You’ll never walk alone:Modeling social behavior for multi-target tracking[C]//2009 IEEE 12th International Conference on Computer Vision.IEEE,2009:261-268. [22]KOSARAJU V,SADEGHIAN A,MARTÍN-MARTÍN R,et al.Social-bigat:Multimodal trajectory forecasting using bicycle-gan and graph attention networks[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems,2019:137-146. [23]MANGALAM K,GIRASE H,AGARWAL S,et al.It is not the journey but the destination:Endpoint conditioned trajectory prediction[C]//Computer Vision-ECCV 2020:16th European Conference,Glasgow,UK,August 23-28,2020,Proceedings,Part II 16.Springer International Publishing,2020:759-776. [24]CHEN W,SANG H,WANG J,et al.DSTCNN:Deformablespatial-temporal convolutional neural network for pedestrian trajectory prediction[J].Information Sciences,2024,666:120455. |
| [1] | WANG Haoyan, LI Chongshou, LI Tianrui. Reinforcement Learning Method for Solving Flexible Job Shop Scheduling Problem Based onDouble Layer Attention Network [J]. Computer Science, 2026, 53(1): 231-240. |
| [2] | DENG Jiayan, TIAN Shirui, LIU Xiangli, OUYANG Hongwei, JIAO Yunjia, DUAN Mingxing. Trajectory Prediction Method Based on Multi-stage Pedestrian Feature Mining [J]. Computer Science, 2025, 52(9): 241-248. |
| [3] | ZHU Shihao, PENG Kexing, MA Tinghuai. Graph Attention-based Grouped Multi-agent Reinforcement Learning Method [J]. Computer Science, 2025, 52(9): 330-336. |
| [4] | ZHOU Tao, DU Yongping, XIE Runfeng, HAN Honggui. Vulnerability Detection Method Based on Deep Fusion of Multi-dimensional Features from Heterogeneous Contract Graphs [J]. Computer Science, 2025, 52(9): 368-375. |
| [5] | LI Yaru, WANG Qianqian, CHE Chao, ZHU Deheng. Graph-based Compound-Protein Interaction Prediction with Drug Substructures and Protein 3D Information [J]. Computer Science, 2025, 52(9): 71-79. |
| [6] | GUO Husheng, ZHANG Xufei, SUN Yujie, WANG Wenjian. Continuously Evolution Streaming Graph Neural Network [J]. Computer Science, 2025, 52(8): 118-126. |
| [7] | JIANG Kun, ZHAO Zhengpeng, PU Yuanyuan, HUANG Jian, GU Jinjing, XU Dan. Cross-modal Hypergraph Optimisation Learning for Multimodal Sentiment Analysis [J]. Computer Science, 2025, 52(7): 210-217. |
| [8] | LIU Yajun, JI Qingge. Pedestrian Trajectory Prediction Based on Motion Patterns and Time-Frequency Domain Fusion [J]. Computer Science, 2025, 52(7): 92-102. |
| [9] | LUO Xuyang, TAN Zhiyi. Knowledge-aware Graph Refinement Network for Recommendation [J]. Computer Science, 2025, 52(7): 103-109. |
| [10] | HAO Jiahui, WAN Yuan, ZHANG Yuhang. Research on Node Learning of Graph Neural Networks Fusing Positional and StructuralInformation [J]. Computer Science, 2025, 52(7): 110-118. |
| [11] | LI Mengxi, GAO Xindan, LI Xue. Two-way Feature Augmentation Graph Convolution Networks Algorithm [J]. Computer Science, 2025, 52(7): 127-134. |
| [12] | LI Yingjian, WANG Yongsheng, LIU Xiaojun, REN Yuan. Cloud Platform Load Data Forecasting Method Based on Spatiotemporal Graph AttentionNetwork [J]. Computer Science, 2025, 52(6A): 240700178-8. |
| [13] | WANG Jinghong, WU Zhibing, WANG Xizhao, LI Haokang. Semantic-aware Heterogeneous Graph Attention Network Based on Multi-view RepresentationLearning [J]. Computer Science, 2025, 52(6): 167-178. |
| [14] | WU Pengyuan, FANG Wei. Study on Graph Collaborative Filtering Model Based on FeatureNet Contrastive Learning [J]. Computer Science, 2025, 52(5): 139-148. |
| [15] | HONG Mingjun, JI Qingge. SPP-STGCN:Spatio-Temporal Graph Convolutional Network for Pedestrian Trajectory Predictionwith Scene-Perdestrian-Perdestrain Interactions [J]. Computer Science, 2025, 52(12): 133-140. |
|
||