Computer Science ›› 2025, Vol. 52 ›› Issue (5): 139-148.doi: 10.11896/jsjkx.240200078
• Database & Big Data & Data Science • Previous Articles Next Articles
WU Pengyuan, FANG Wei
CLC Number:
[1]RICCI F,ROKACH L,SHAPIRA B.Introduction to Recommender Systems Handbook [M]//Recommender Systems Handbook.Boston,MA:Springer.2011:1-35. [2]LINDEN G,SMITH B,YORK J.Amazon.com recommendations:item-to-item collaborative filtering [J].IEEE Internet Computing,2003,7(1):76-80. [3]GOMEZ-URIBE C A,HUNT N.The Netflix RecommenderSystem:Algorithms,Business Value,and Innovation [J].ACM Trans Manage Inf Syst,2016,6(4):1-19. [4]SARWAR B,KARYPIS G,KONSTAN J,et al.Item-based collaborative filtering recommendation algorithms [C]//Proceedings of the 10th International Conference on World Wide Web.2001:285-295. [5]HE X,LIAO L,ZHANG H,et al.Neural Collaborative Filtering[C]//Proceedings of the 26th International Conference on World Wide Web.2017:173-182. [6]HE X,DENG K,WANG X,et al.Lightgcn:Simplifying andpowering graph convolution network for recommendation [C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval.2020:639-648. [7]WANG X,HE X,WANG M,et al.Neural Graph Collaborative Filtering [C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval.2019:165-174. [8]WU J,WANG X,FENG F,et al.Self-supervised Graph Learning for Recommendation [C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval.2021:726-735. [9]SUN J,ZHANG Y,MA C,et al.Multi-graph convolution collaborative filtering [C]//2019 IEEE International Conference on Data Mining(ICDM).2019:1306-1311. [10]WU L,SUN P,FU Y,et al.A Neural Influence Diffusion Model for Social Recommendation [C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval.2019:235-244. [11]YU L,DU Q H,YUE B Y,et al.Survey of ReinforcementLearning Based Recommender Systems[J].Computer Science,2021,48(10):1-18. [12]LIN Z,TIAN C,HOU Y,et al.Improving Graph Collaborative Filtering with Neighborhood-enriched Contrastive Learning [C]//Proceedings of the ACM Web Conference 2022.2022:2320-2329. [13]GORI M,PUCCI A.ItemRank:a random-walk based scoring algorithm for recommender engines [C]//Proceedings of the 20th International Joint Conference on Artifical Intelligence.2007:2766-2771. [14]BALUJA S,SETH R,SIVAKUMAR D,et al.Video suggestion and discovery for youtube:taking random walks through the view graph [C]//Proceedings of the 17th International Conference on World Wide Web.2008:895-904. [15]KABBUR S,NING X,KARYPIS G.FISM:factored item similarity models for top-N recommender systems [C]//Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2013:659-667. [16]RENDLE S,FREUDENTHALER C,GANTNER Z,et al.BPR:Bayesian personalized ranking from implicit feedback [C]//Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence.2009:452-461. [17]LI J,ZHOU P,XIONG C,et al.Prototypical contrastive learning of unsupervised representations [J].arXiv:2005,04966,2020. [18]LIANG M X,WANG S,ZHU J W,et al.Survey of Knowledge-enhanced Natural Language Generation Research[J/OL].https://www.jsjkx.com/CN/article/openArticlePDF.jsp?id=21572. [19]GIORGI J,NITSKI O,WANG B,et al.Declutr:Deep contras-tive learning for unsupervised textual representations [J].arXiv:2006,03659,2020. [20]CHEN T,KORNBLITH S,NOROUZI M,et al.A simpleframework for contrastive learning of visual representations [C]//Proceedings of the 37th International Conference on Machine Learning.2020. [21]GRILL J B,STRUB F,ALTCHÉ F,et al.Bootstrap your own latent-a new approach to self-supervised learning [J].Advances in neural information processing systems,2020,33:21271-21284. [22]HE K M,FAN H Q,WU Y X,et al.Momentum Contrast forUnsupervised Visual Representation Learning [C]//Procee-dings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.2020:9726-9735. [23]CESAR L B,CALLEJO M Á M,CIRA C I.Bidirectional Encoder Representation from Transformers(BERT) Variants for Procedural Long-Form Answer Extraction [J].Engineering Proceedings,2022,39(1):71-76. [24]CARLSSON F,GYLLENSTEN A C,GOGOULOU E,et al.Semantic Re-tuning with Contrastive Tension [C]//International Conference on Learning Representations.2021:157-169. [25]OORD A V D,LI Y,VINYALS O.Representation Learningwith Contrastive Predictive Coding [J].arXiv:8070,3748,2018. [26]HAMILTON W L,YING R,LESKOVEC J.Inductive representation learning on large graphs [C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.2017:1025-1035. [27]RADFORD A,KIM J W,HALLACY C,et al.Learning Transferable Visual Models From Natural Language Supervision [C]//Proceedings of the 38th International Conference on Machine Learning.2021:8748-8763. [28]LU J,BATRA D,PARIKH D,et al.ViLBERT:PretrainingTask-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks [C]//Neural Information Processing Systems.2019:13-23. [29]CHEN D,SONG H Z,ZHANG J,et al.Entity Recognition Fusing BERT and Memory Networks[J].Computer Science,2021,48(10):91-97. [30]LIN Z,TIAN C,HOU Y,et al.Improving Graph Collaborative Filtering with Neighborhood-enriched Contrastive Learning [C]//Proceedings of the ACM Web Conference.2022:2320-2329. [31]WANG X,JIN H,ZHANG A,et al.Disentangled Graph Collab-orative Filtering [C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval.2020:1001-1010. [32]MOON T K.The expectation-maximization algorithm [J].IEEE Signal processing magazine,1996,13(6):47-60. [33]HARPER F M,KONSTAN J A.The MovieLens Datasets [J].ACM Transactions on Interactive Intelligent Systems(TIIS),2015,5(4):1-19. [34]MCAULEY J,TARGETT C,SHI Q,et al.Image-Based Recommendations on Styles and Substitutes [C]//Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval.2015:43-52. [35]CHO E,MYERS S A,LESKOVEC J.Friendship and mobility:user movement in location-based social networks [C]//Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2011:1082-1090. [36]ZHAO W X,CHEN J,WANG P,et al.Revisiting AlternativeExperimental Settings for Evaluating Top-N Item Recommendation Algorithms [C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management.2020:2329-2332. [37]YOU Y,CHEN T,SUI Y,et al.Graph contrastive learning with augmentations [C]//Proceedings of the 34th International Conference on Neural Information Processing Systems.2020. |
[1] | WU Xingli, ZHANG Haoyue, LIAO Huchang. Review of Doctor Recommendation Methods and Applications for Consultation Platforms [J]. Computer Science, 2025, 52(5): 109-121. |
[2] | FU Kun, CUI Jingyuan, DANG Xing, CHENG Xiao, YING Shicong, LI Jianwei. Study on Graph Data Augmentation Based on Graph Entropy Theory [J]. Computer Science, 2025, 52(5): 149-160. |
[3] | MIAO Zhuang, CUI Haoran, ZHANG Qiyang, WANG Jiabao, LI Yang. Restoration of Atmospheric Turbulence-degraded Images Based on Contrastive Learning [J]. Computer Science, 2025, 52(5): 171-178. |
[4] | DENG Ceyu, LI Duantengchuan, HU Yiren, WANG Xiaoguang, LI Zhifei. Joint Inter-word and Inter-sentence Multi-relationship Modeling for Review-basedRecommendation Algorithm [J]. Computer Science, 2025, 52(4): 119-128. |
[5] | AN Rui, LU Jin, YANG Jingjing. Deep Clustering Method Based on Dual-branch Wavelet Convolutional Autoencoder and DataAugmentation [J]. Computer Science, 2025, 52(4): 129-137. |
[6] | YANG Yingxiu, CHEN Hongmei, ZHOU Lihua , XIAO Qing. Heterogeneous Graph Attention Network Based on Data Augmentation [J]. Computer Science, 2025, 52(3): 180-187. |
[7] | TIAN Qing, KANG Lulu, ZHOU Liangyu. Class-incremental Source-free Domain Adaptation Based on Multi-prototype Replay andAlignment [J]. Computer Science, 2025, 52(3): 206-213. |
[8] | LIU Yanlun, XIAO Zheng, NIE Zhenyu, LE Yuquan, LI Kenli. Case Element Association with Evidence Extraction for Adjudication Assistance [J]. Computer Science, 2025, 52(2): 222-230. |
[9] | YUAN Ye, CHEN Ming, WU Anbiao, WANG Yishu. Graph Anomaly Detection Model Based on Personalized PageRank and Contrastive Learning [J]. Computer Science, 2025, 52(2): 80-90. |
[10] | YE Lishuo, HE Zhixue. Multi-granularity Time Series Contrastive Learning Method Incorporating Time-Frequency Features [J]. Computer Science, 2025, 52(1): 170-182. |
[11] | DAI Chaofan, DING Huahua. Domain-adaptive Entity Resolution Algorithm Based on Semi-supervised Learning [J]. Computer Science, 2024, 51(9): 214-222. |
[12] | TIAN Sicheng, HUANG Shaobin, WANG Rui, LI Rongsheng, DU Zhijuan. Contrastive Learning-based Prompt Generation Method for Large-scale Language Model ReverseDictionary Task [J]. Computer Science, 2024, 51(8): 256-262. |
[13] | HU Haibo, YANG Dan, NIE Tiezheng, KOU Yue. Graph Contrastive Learning Incorporating Multi-influence and Preference for Social Recommendation [J]. Computer Science, 2024, 51(7): 146-155. |
[14] | TIAN Qing, LU Zhanghu, YANG Hong. Unsupervised Domain Adaptation Based on Entropy Filtering and Class Centroid Optimization [J]. Computer Science, 2024, 51(7): 345-353. |
[15] | YIN Xudong, CHEN Junyang, ZHOU Bo. Study on Industrial Defect Augmentation Data Filtering Based on OOD Scores [J]. Computer Science, 2024, 51(6A): 230700111-7. |
|