Computer Science ›› 2021, Vol. 48 ›› Issue (12): 149-158.doi: 10.11896/jsjkx.210100200
• Computer Software • Previous Articles Next Articles
ZHANG Jian-xiong1, SONG Kun1, HE Peng1,2, LI Bing3
CLC Number:
[1]PAN W,LI B,MA Y,et al.Measuring structural quality of object-oriented softwares via bug propagation analysis on weighted software networks[J].Journal of Computer Science and Technology,2010,25(6):1202-1213. [2]MAGGIE H,KATERINA G P.Common trends in software fault and failure data[J].IEEE Transactions on Software Engineering,2009,35(4):484-496. [3]DAI J Y,WANG B,SHENG J F,et al.Identifying influential nodes in complex networks based on local neighbor contribution[J].IEEE Access,2019,DOI:10.1109/ACCESS.2019.2939804. [4]RUAN Y R,LAO S Y,WANG J D,et al.Node importance measurement based on neighborhood similarity in complex network[J].Journal of Physics,2017,66(3):1-8. [5]TAN Y J,WU J,DENG H Z.Evaluation Method for Node Importance base on Node Contractionin Complex Networks[J].Systems Engineering Theory and Practice,2006,26(11):79-83. [6]BIAN T,HU J T,DENG Y.Identifying influential nodes in complex networks based on AHP[J].Physica A Statistical Mechanics and its Applications,2017,479:422-436. [7]WATTS D J,STROGATZ S H.Collective dynamics of ‘small-world' networks[J].Nature,1998,393:440-442. [8]BARABÁSI A L,ALBERT R.Emergence of scaling in random networks[J].Science,1999,286:509-512. [9]CONCAS G,LOCCI M F,PINNA S,et al.Fractal dimension in software networks[J].Europhysics Letters,2006,76(6):1221-1227. [10]WANG X F,LI X,CHEN G R.Complex Network Theory and Its Application[M].Beijing:Tsinghua University Press,2006. [11]HE K Q,MA Y T,LIU J,et al.Software Network[M].Beijing:Science Press,2008. [12]MYERS C R.Software systems as complex networks:Struc- ture,function,and evolvability of software collaboration graphs[J].Phys. Rev. E,2003,68:46116. [13]PAN W,LI B,MA Y,et al.Class structure refactoring of object-oriented softwares using community detection in dependency[J].Networks Frontiers of Computer Science in China,2009,3(3):396-404. [14]VALVERDE S,CANCHO R F,SOLÉ R V.Scale free networks from optimal design[J].Europhysics Letters,2002,60(4):512-517. [15]OPSAHL T,AGNEESSENS F,SKVORETZ J.Node centrality in weighted networks:generalizing degree and shortest paths[J].Social Networks,2010,32(3):245-251. [16]KITSAK M,GALLOS L K,HAVLIN S,et al.Identification of influential spreaders in complex networks[J].Nature Physics,2010,6(11):888-893. [17]LI P X,RENG Y Q,XI Y M.An Importance Measure of Actors(Set) within a Network[J].Systems Engineering,2004,22:13-20. [18]BRIN S,PAGE L.The anatomy of a large-scale hypertextual web search engine[J].Computer Networks,2012,56(18):3825-3833. [19]KLEINBERG J M.Authoritative sources in a hyperlinked environment[J].Journal of the ACM,1999,46(5):604-632. [20]WANG M,PAN W.A comparative study of network centrality metrics in identifying key classes in software[J].Journal of Computational Information Systems,2012,8(24):10205-10212. [21]PERIN F,RENGGLI L,RESSIA J.Ranking software artifacts[C]//Proceedings of 4th Workshop on FAMIX and Moose in Software Reengineering(FAMOO-Sr'10).2010:1-4. [22]WANG M S,LU H M.Identifying Key Classes Using h-Index and its Variants[J].Computer Science and Exploration,2011,5(10):891-903. [23]HU S W,LI B,HE P,et al.Approach Based h-index to Measu-ring the Important Classes in Software Network[J].Small Microcomputer System,2017(2):249-253. [24]WANG Y,YU H,ZHU Z L.A Class Integration Test Order Method Based on the Node Importance of Software[J].Compu-ter Research and Development,2016,53(3):17-30. [25]LI D W,LI B,HE P,et al.Ranking the importance of classes via software structural analysis[J].Future Communication,Computing,Control and Management,2012,141:441-449. [26]JIANG S J,JU X L,WANG X Y,et al.Measuring the Importance of Classes Using UIO Sequence[J].Electronic Journals,2015,43(10):2062-2068. [27]WANG J,AI J,YANG Y,et al.Identifying key classes of object-oriented software based on software complex network[C]//International Conference on System Reliability & Safety.IEEE,2017:444-449. [28]SRINIVASAN S M,SANGWAN R S,NEILL C J.On the measures for ranking software components[J].Innovations in Systems and Software Engineering,2017,13:161-175. [29]PAN W F,MING H,CARL K,et al.ElementRank:Ranking Java software classes and packages using multilayer complex network-based approach[C]//IEEE Transactions on Software Engineering.2019. [30]PAN W F,SONG B B,LI K S,et al.Identifying key classes in object-oriented software using generalized k-core decomposition[J].Future Generation Computer Systems,2018,81:188-202. [31]GORI M,MONFARDINI G,SCARSELLI F.A new model for learning in graph domains[C]//Proc. of IJCNN. IEEE,2005:729-734. [32]SCARSELLI F,GORI M,TSOI A C,et al.The graph neural network model[J].IEEE Transactions on Neural Networks,2009,20(1):61-80. [33]GALLICCHIO C,MICHELI A.Graph echo state networks [C]//IJCNN.IEEE,2010:1-8. [34]SIMONOVSKY M,KOMODAKIS N.Graphvae:Towards gene-ration of small graphs using variational autoencoders[C]//International Conference on Artificial Neural Networks.2018:412-422. [35]BOJCHEVSKI A,SHCHUR O,ZUGNER D,et al.Netgan: Generating graphs via random walks[C]//Proceedings of the 35th Int. Conference on Machine Learning.2018:610-619. [36]LIU T Y.Learning to Rank for Information Retrieval[M].Berlin:Springer,2011. [37]SHI Z,KEUNG J,BENNIN K E,et al.Comparing learning to rank techniques in hybrid bug localization[J].Applied Soft Computing,2018,62:636-648. [38]BURGES C,SHAKED T,RENSHAW E,et al.Learning to rank using gradient descent[C]//Proceedings of the 22Nd International Conference on Machine Learning.Bonn,Germany,2005:89-96. [39]FREUND Y,IYER R,SCHAPIRE R E,et al.An efficient boosting algorithm for combining preferences[J].Journal of Machine Learning Research,2004,4(6):170-178. [40]WU Q,BURGES C C,SVORE K,et al.Adapting boosting for information retrieval measures[J].Inf. Retrieval.2010,13(3):254-270. [41]KIPF T N,WELLING M.Semi-supervised classification with graph convolutional networks[C]//Proc. of International Conference on Learning Representations.Toulon,France,2017,arXiv:1609.02907v4. [42]HAMILTON W L,YING R,LESKOVEC J.Inductive representation learning on large graphs[C]//31st Conference on Neural Information Processing Systems(NIPS 2017).Long Beach,CA,USA,2017:1-11. [43]LI Y,TARLOW D,BROCKSCHMIDT M,et al.Gated graph sequence neural networks[J].arXiv:1511.05493,2015. [44]XU K,LI C T,TIAN Y L,et al.Representation learning on graphs with jumping knowledge networks[C]//Proceedings of the 35th International Conference on Machine Learning.Stockholm,Sweden,2018:5449-5458. [45]ZAIDMAN A,DEMEYER S.Automatic identification of key classes in a software system using web mining techniques[J].Journal of Software Maintenance and Evolution:Research and Practice,2008,20(6):387-417. [46]IYER S,KILLINGBACK T,SUNDARAM B,et al.Attack robustness and centrality of complex networks[J].PLoS ONE,2013,8(4):e59613. [47]FAN C,ZENG L,DING Y,et al.Learning to identify high betweenness centrality nodes from scratch:a novel graph neural network approach[J].arXiv:1905.10418v1. |
[1] | ZHOU Fang-quan, CHENG Wei-qing. Sequence Recommendation Based on Global Enhanced Graph Neural Network [J]. Computer Science, 2022, 49(9): 55-63. |
[2] | YAN Jia-dan, JIA Cai-yan. Text Classification Method Based on Information Fusion of Dual-graph Neural Network [J]. Computer Science, 2022, 49(8): 230-236. |
[3] | QI Xiu-xiu, WANG Jia-hao, LI Wen-xiong, ZHOU Fan. Fusion Algorithm for Matrix Completion Prediction Based on Probabilistic Meta-learning [J]. Computer Science, 2022, 49(7): 18-24. |
[4] | YANG Bing-xin, GUO Yan-rong, HAO Shi-jie, Hong Ri-chang. Application of Graph Neural Network Based on Data Augmentation and Model Ensemble in Depression Recognition [J]. Computer Science, 2022, 49(7): 57-63. |
[5] | XIONG Zhong-min, SHU Gui-wen, GUO Huai-yu. Graph Neural Network Recommendation Model Integrating User Preferences [J]. Computer Science, 2022, 49(6): 165-171. |
[6] | DENG Zhao-yang, ZHONG Guo-qiang, WANG Dong. Text Classification Based on Attention Gated Graph Neural Network [J]. Computer Science, 2022, 49(6): 326-334. |
[7] | YU Ai-xin, FENG Xiu-fang, SUN Jing-yu. Social Trust Recommendation Algorithm Combining Item Similarity [J]. Computer Science, 2022, 49(5): 144-151. |
[8] | LI Yong, WU Jing-peng, ZHANG Zhong-ying, ZHANG Qiang. Link Prediction for Node Featureless Networks Based on Faster Attention Mechanism [J]. Computer Science, 2022, 49(4): 43-48. |
[9] | CAO He-xin, ZHAO Liang, LI Xue-feng. Technical Research of Graph Neural Network for Text-to-SQL Parsing [J]. Computer Science, 2022, 49(4): 110-115. |
[10] | MIAO Xu-peng, ZHOU Yue, SHAO Ying-xia, CUI Bin. GSO:A GNN-based Deep Learning Computation Graph Substitutions Optimization Framework [J]. Computer Science, 2022, 49(3): 86-91. |
[11] | CHEN Shi-cong, YUAN De-yu, HUANG Shu-hua, YANG Ming. Node Label Classification Algorithm Based on Structural Depth Network Embedding Model [J]. Computer Science, 2022, 49(3): 105-112. |
[12] | GUO Lei, MA Ting-huai. Friend Closeness Based User Matching [J]. Computer Science, 2022, 49(3): 113-120. |
[13] | YANG Xu-hua, WANG Lei, YE Lei, ZHANG Duan, ZHOU Yan-bo, LONG Hai-xia. Complex Network Community Detection Algorithm Based on Node Similarity and Network Embedding [J]. Computer Science, 2022, 49(3): 121-128. |
[14] | ZHENG Su-su, GUAN Dong-hai, YUAN Wei-wei. Heterogeneous Information Network Embedding with Incomplete Multi-view Fusion [J]. Computer Science, 2021, 48(9): 68-76. |
[15] | ZHANG Ren-zhi, ZHU Yan. Malicious User Detection Method for Social Network Based on Active Learning [J]. Computer Science, 2021, 48(6): 332-337. |
|