Computer Science ›› 2022, Vol. 49 ›› Issue (7): 57-63.doi: 10.11896/jsjkx.210800070
• Database & Big Data & Data Science • Previous Articles Next Articles
YANG Bing-xin, GUO Yan-rong, HAO Shi-jie, Hong Ri-chang
CLC Number:
[1]ZUNG W W.A Self-Rating Depression Scale[J].Archives ofGeneral Psychiatry,1965,12(1):63-70. [2]EHDE D M.Hamilton Depression Rating Scale[M]//Encyclopedia of Clinical Neuropsychology.New York:Springer,2011:1205-1207. [3]BECK A T,STEER R A,CARBIN M G.Psychometric properties of the Beck Depression Inventory:Twenty-five years of evaluation[J].Clinical Psychology Review,1988,8(1):77-100. [4]SEGAL D L.Diagnostic and Statistical Manual of Mental Disorders(DSM-IV-TR) [M]//The Corsini Encyclopedia of Psychology.John Wiley & Sons,Ltd,2010:1-3. [5]CHANG C C,LIN C J.LIBSVM:a library for support vector machines[J].ACM transactions on intelligent systems and technology(TIST),2011,2(3):1-27. [6]PETERSON L E.K-nearest neighbor[J].Scholarpedia,2009,4(2):1883-1895. [7]CAI H,QU Z,LI Z,et al.Feature-level Fusion ApproachesBased on Multimodal EEG Data for Depression Recognition[J].Information Fusion,2020,59:127-138. [8]HU B,RAO J,LI X,et al.Emotion regulating attentional control abnormalities in major depressive disorder:an event-related potential study[J].Scientific Reports,2017,7(1):1-21. [9]JIANG H,HU B,LIU Z,et al.Investigation of different speech types and emotions for detecting depression using different classifiers[J].Speech Communication,2017,90:39-46. [10]LI X,TONG C,SUN S,et al.Classification study on eye movement data:Towards a new approach in depression detection[C]//2016 IEEE Congress on Evolutionary Computation (CEC).IEEE,2016:1227-1232. [11]LU S,XU J,LI M,et al.Attentional bias scores in patients with depression and effects of age:a controlled,eye-tracking study[J].Journal of International Medical Research,2017,45(4):1518-1527. [12]BAILEY N W,KREPEL N,DIJK H V,et al.Resting EEG theta connectivity and alpha power to predict repetitive transcranial magnetic stimulation response in depression:A non-replication from the ICON-DB consortium[J].Clinical Neurophysiology,2021,132(2):650-659. [13]ZHU J,WANG Z,GONG T,et al.An Improved Classification Model for Depression Detection Using EEG and Eye Tracking Data[J].IEEE Transactions on Nano Bioscience,2020,19(3):527-537. [14]CHEN F,ZHAO L,LI B,et al.Depression evaluation based on prefrontal EEG signals in resting state using fuzzy measure entropy[J/OL].Physiological Measurement,2020,41(9):095007.https://www.researchgate.net/publication/343799441_Depression_evaluation_based_on_the_prefrontal_EEG_signal_in_resting_state_using_the_fuzzy_measure_entropy. [15]LI X W,HU B,SUN S T,et al.EEG-based mild depressive detection using feature selection methods and classifiers.[J].Computer Methods & Programs in Biomedicine,2016,136(C):151-161. [16]LI P,SONG X,JING W,et al.Reduced sensitivity to neutralfeedback versus negative feedback in subjects with mild depression:Evidence from event-related potentials study[J].Brain & Cognition,2015,100(NOV.):15-20. [17]ACHARYA U R,SUDARSHAN V K,ADELI H,et al.A Novel Depression Diagnosis Index Using Nonlinear Features in EEG Signals[J].European Neurology,2016,74:79-83. [18]KAUR C,SINGH P,BISHT A,et al.EEG Signal denoisingusing hybrid approach of Variational Mode Decomposition and wavelets for depression[J].Biomedical Signal Processing and Control,2020,65(4):102337. [19]MAHATO S,GOYAL N,RAM D,et al.Detection of Depression and Scaling of Severity Using Six Channel EEG Data[J].Journal of Medical Systems,2020,44(7):118. [20]BOCHAROV A V,KNYAZEV G G,Savostyanov A N,et al.Relationship of Depression,Anxiety,and Rumination Scores with EEG Connectivity of Resting State Networks[J].Human Physiology,2021,47(2):123-127. [21]CAI H,HAN J,CHEN Y,et al.A Pervasive Approach to EEG-Based Depression Detection[J/OL].Complexity,2018(1):13.https://www.hindawi.com/journals/complexity/2018/5238028/. [22]AKBARI H,SADIQ M T,REHMAN A U,et al.Depression recognition based on the reconstruction of phase space of EEG signals and geometrical features[J].Applied Acoustics,2021,179:1-16. [23]ZHANG X,HU B,ZHOU L,et al.An EEG based pervasive depression detection for females[C]//Joint International Confe-rence on Pervasive Computing and the Networked World.Berlin:Springer,2012:848-861. [24]HOSSEINIFARD B,MORADI M H,ROSTAMI R.Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from EEG signal[J].Compu-ter Methods and Programs in biomedicine.2013,109(3):339-345. [25]LIAO S C,WU C T,HUANG H C,et al.Major Depression Detection from EEG Signals Using Kernel Eigen-Filter-Bank Common Spatial Patterns[J].Sensors,2017,17(6):1385-1402. [26]ZHONG P,WANG D,MIAO C.EEG-Based Emotion Recognition Using Regularized Graph Neural Networks[J/OL].IEEE Transactions on Affective Computing,2020.https://ieeexplore.ieee.org/document/9091308/. [27]SONG T,LIU S,ZHENG W,et al.Instance-Adaptive Graph for EEG Emotion Recognition[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:2701-2708. [28]SUNS T,LI X W,ZHU J,et al.Graph Theory Analysis ofFunctional Connectivity in Major Depression Disorder with High-Density Resting State EEG Data[J].IEEE transactions on neural systems and rehabilitation engineering:a publication of the IEEE Engineering in Medicine and Biology Society,2019,27(3):429-439. [29]SCARSELLI F,GORI M,AC TSOI,et al.The Graph Neural Network Model[J].IEEE Transactions on Neural Networks,2009,20(1):61-80. [30]DOUGLAS B L.The Weisfeiler-Lehman Method and Graph Isomorphism Testing[J].arXiv:1101.5211,2011. [31]XU K,HU W,LESKOVEC J,et al.How powerful are graphneural networks? [J].arXiv:1810.00826,2018. [32]WIENER G.Search for a majority element[J].Journal of Statistical Planning & Inference,2002,100(2):313-318. [33]CAI H,GAO Y,SUN S,et al.MODMA dataset:a Multi-model Open Dataset for Mental- disorder Analysis[J].arXiv:2002.09283,2020. [34]NGUYEN D Q,NGUYEN T D,PHUNG D.Unsupervised Universal Self-Attention Network for Graph Classification[J].ar-Xiv:1909.11855,2019. [35]ZHANG Z,BU J,ESTER M,et al.Hierarchical Graph Pooling with Structure Learning[J].arXiv:1911.05954,2019. [36]YANG J,NIU J,ZENG S,et al.Resting state EEG based depression recognition research using voting strategy method[C]//2018 IEEE International Conference on Bioinformatics and Biomedicine(BIBM).IEEE,2018:2666-2673. |
[1] | CHEN Zhi-qiang, HAN Meng, LI Mu-hang, WU Hong-xin, ZHANG Xi-long. Survey of Concept Drift Handling Methods in Data Streams [J]. Computer Science, 2022, 49(9): 14-32. |
[2] | ZHOU Fang-quan, CHENG Wei-qing. Sequence Recommendation Based on Global Enhanced Graph Neural Network [J]. Computer Science, 2022, 49(9): 55-63. |
[3] | ZHOU Xu, QIAN Sheng-sheng, LI Zhang-ming, FANG Quan, XU Chang-sheng. Dual Variational Multi-modal Attention Network for Incomplete Social Event Classification [J]. Computer Science, 2022, 49(9): 132-138. |
[4] | HAO Zhi-rong, CHEN Long, HUANG Jia-cheng. Class Discriminative Universal Adversarial Attack for Text Classification [J]. Computer Science, 2022, 49(8): 323-329. |
[5] | WU Hong-xin, HAN Meng, CHEN Zhi-qiang, ZHANG Xi-long, LI Mu-hang. Survey of Multi-label Classification Based on Supervised and Semi-supervised Learning [J]. Computer Science, 2022, 49(8): 12-25. |
[6] | TAN Ying-ying, WANG Jun-li, ZHANG Chao-bo. Review of Text Classification Methods Based on Graph Convolutional Network [J]. Computer Science, 2022, 49(8): 205-216. |
[7] | YAN Jia-dan, JIA Cai-yan. Text Classification Method Based on Information Fusion of Dual-graph Neural Network [J]. Computer Science, 2022, 49(8): 230-236. |
[8] | QI Xiu-xiu, WANG Jia-hao, LI Wen-xiong, ZHOU Fan. Fusion Algorithm for Matrix Completion Prediction Based on Probabilistic Meta-learning [J]. Computer Science, 2022, 49(7): 18-24. |
[9] | GAO Zhen-zhuo, WANG Zhi-hai, LIU Hai-yang. Random Shapelet Forest Algorithm Embedded with Canonical Time Series Features [J]. Computer Science, 2022, 49(7): 40-49. |
[10] | ZHANG Hong-bo, DONG Li-jia, PAN Yu-biao, HSIAO Tsung-chih, ZHANG Hui-zhen, DU Ji-xiang. Survey on Action Quality Assessment Methods in Video Understanding [J]. Computer Science, 2022, 49(7): 79-88. |
[11] | DU Li-jun, TANG Xi-lu, ZHOU Jiao, CHEN Yu-lan, CHENG Jian. Alzheimer's Disease Classification Method Based on Attention Mechanism and Multi-task Learning [J]. Computer Science, 2022, 49(6A): 60-65. |
[12] | LI Xiao-wei, SHU Hui, GUANG Yan, ZHAI Yi, YANG Zi-ji. Survey of the Application of Natural Language Processing for Resume Analysis [J]. Computer Science, 2022, 49(6A): 66-73. |
[13] | DENG Kai, YANG Pin, LI Yi-zhou, YANG Xing, ZENG Fan-rui, ZHANG Zhen-yu. Fast and Transmissible Domain Knowledge Graph Construction Method [J]. Computer Science, 2022, 49(6A): 100-108. |
[14] | HUANG Shao-bin, SUN Xue-wei, LI Rong-sheng. Relation Classification Method Based on Cross-sentence Contextual Information for Neural Network [J]. Computer Science, 2022, 49(6A): 119-124. |
[15] | LIN Xi, CHEN Zi-zhuo, WANG Zhong-qing. Aspect-level Sentiment Classification Based on Imbalanced Data and Ensemble Learning [J]. Computer Science, 2022, 49(6A): 144-149. |
|