Computer Science ›› 2022, Vol. 49 ›› Issue (7): 18-24.doi: 10.11896/jsjkx.210600126
• Database & Big Data & Data Science • Previous Articles Next Articles
QI Xiu-xiu, WANG Jia-hao, LI Wen-xiong, ZHOU Fan
CLC Number:
[1]PAZZANI M J,BILLSUS D.Content-based recommendationsystems[M]//The adaptive Web.Berlin:Springer,2007:325-341. [2]GOLDBERG D,NICHOLS D,OKI B M,et al.Using collaborative filtering to weave an information tapestry[J].Communications of the ACM,1992,35(12):61-70. [3]HAMILTON W,YING Z,LESKOVEC J.Inductive representation learning on large graphs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.2017:1025-1035. [4]KALOFOLIAS V,BRESSON X,BRONSTEIN M,et al.Matrix completion on graphs[J].arXiv:1408.1717,2014. [5]RAO N.Collaborative Filtering with Graph Information:Consistency and Scalable Methods[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems.2015:2107-2115. [6]MONTI F,BRONSTEIN M M,BRESSON X.Geometric matrix completion with recurrent multi-graph neural networks[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.2017:3700-3710. [7]BERG R,KIPF T N,WELLING M.Graph convolutional matrix completion [EB/OL].(2017-10-25)[2018-07-28].http://ar-xiv.org/abs/1706.02263. [8]ZHANG M,CHEN Y.Inductive matrix completion based ongraph neural networks[C]//International Conference on Lear-ning Representations.2020. [9]FINN C,ABBEEL P,LEVINE S.Model-agnostic meta-learning for fast adaptation of deep networks[C]//International Confe-rence on Machine Learning.PMLR,2017:1126-1135. [10]JAMALI M,ESTER M.A matrix factorization technique with trust propagation for recommendation in social networks[C]//Proceedings of the Fourth ACM Conference on Recommender Systems.2010:135-142. [11]MA H,ZHOU D,LIU C,et al.Recommender systems with social regularization[C]//Proceedings of the Fourth ACM International Conference on Web Search and Data Mining.2011:287-296. [12]DROR G,KOENIGSTEIN N,KOREN Y,et al.The Yahoo! Music Dataset and KDD-Cup'11[C]//Proceedings of KDD Cup 2011.PMLR,San Diego,CA,USA,2012:3-18. [13]CANDÉS E J,RECHT B.Exact matrix completion via convex optimization[J].Foundations of Computational Mathematics,2009,9(6):717-772. [14]ZHANG M,CHEN Y.Weisfeiler-lehman neural machine forlink prediction[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mi-ning.2017:575-583. [15]LI X,CHEN H.Recommendation as link prediction in bipartite graphs:A graph kernel-based machine learning approach[J].Decision Support Systems,2013,54(2):880-890. [16]HUISMAN M,VAN RIJN J N,PLAAT A.A survey of deep meta-learning[J].Artificial Intelligence Review,2021,54(6):4483-4541. [17]BEAL M J.Variational algorithms for approximate Bayesian inference [D].London:UCL(University College London),2003. [18]RAVI S,BEATSON A.Amortized Bayesian Meta-Learning[C]//International Conference on Learning Representations(ICLR).2019. [19]AMIT R,MEIR R.Meta-learning by adjusting priors based on extended PAC-Bayes theory[C]//International Conference on Machine Learning.PMLR,2018:205-214. [20]FINN C,XU K,LEVINE S.Probabilistic model-agnostic meta-learning[C]//International Conference on Neural Information Processing Systems(NIPS).2018:9537-9548. [21]YOON J,KIM T,DIA O,et al.Bayesian model-agnostic meta-learning[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems.2018:7343-7353. [22]GRANT E,FINN C,LEVINE S,et al.Recasting gradient-based meta-learning as hierarchical bayes[C]//International Confe-rence on Learning Representations(ICLR).2018. [23]SCARSELLI F,GORI M,TSOI A C,et al.The graph neural network model[J].IEEE transactions on neural networks,2008,20(1):61-80. [24]SCHLICHTKRULL M,KIPF T N,BLOEM P,et al.Modeling relational data with graph convolutional networks[C]//Euro-pean semantic web conference.Cham:Springer,2018:593-607. [25]BISHOP C M,NASRABADI N M.Pattern recognition and machine learning[M].New York:Springer,2006. [26]RAO N,YU H F,RAVIKUMAR P,et al.Collaborative Filtering with Graph Information:Consistency and Scalable Methods[C]//NIPS.2015. [27]MONTI F,BRONSTEIN M M,BRESSON X.Geometric matrix completion with recurrent multi-graph neural networks[C]//International Conference on Neural Information Processing Systems.2017:3700-3710. [28]HARTFORD J,GRAHAM D,LEYTON-BROWN K,et al.Deep models of interactions across sets[C]//International Conference on Machine Learning.PMLR,Stockholm,2018:1909-1918. [29]RAVI S,BEATSON A.Amortized bayesian meta-learning[C]//International Conference on Learning Representations.2019. |
[1] | ZHOU Fang-quan, CHENG Wei-qing. Sequence Recommendation Based on Global Enhanced Graph Neural Network [J]. Computer Science, 2022, 49(9): 55-63. |
[2] | QIN Qi-qi, ZHANG Yue-qin, WANG Run-ze, ZHANG Ze-hua. Hierarchical Granulation Recommendation Method Based on Knowledge Graph [J]. Computer Science, 2022, 49(8): 64-69. |
[3] | FANG Yi-qiu, ZHANG Zhen-kun, GE Jun-wei. Cross-domain Recommendation Algorithm Based on Self-attention Mechanism and Transfer Learning [J]. Computer Science, 2022, 49(8): 70-77. |
[4] | YAN Jia-dan, JIA Cai-yan. Text Classification Method Based on Information Fusion of Dual-graph Neural Network [J]. Computer Science, 2022, 49(8): 230-236. |
[5] | SHUAI Jian-bo, WANG Jin-ce, HUANG Fei-hu, PENG Jian. Click-Through Rate Prediction Model Based on Neural Architecture Search [J]. Computer Science, 2022, 49(7): 10-17. |
[6] | YANG Bing-xin, GUO Yan-rong, HAO Shi-jie, Hong Ri-chang. Application of Graph Neural Network Based on Data Augmentation and Model Ensemble in Depression Recognition [J]. Computer Science, 2022, 49(7): 57-63. |
[7] | CAI Xiao-juan, TAN Wen-an. Improved Collaborative Filtering Algorithm Combining Similarity and Trust [J]. Computer Science, 2022, 49(6A): 238-241. |
[8] | HE Yi-chen, MAO Yi-jun, XIE Xian-fen, GU Wan-rong. Matrix Transformation and Factorization Based on Graph Partitioning by Vertex Separator for Recommendation [J]. Computer Science, 2022, 49(6A): 272-279. |
[9] | HONG Zhi-li, LAI Jun, CAO Lei, CHEN Xi-liang, XU Zhi-xiong. Study on Intelligent Recommendation Method of Dueling Network Reinforcement Learning Based on Regret Exploration [J]. Computer Science, 2022, 49(6): 149-157. |
[10] | XIONG Zhong-min, SHU Gui-wen, GUO Huai-yu. Graph Neural Network Recommendation Model Integrating User Preferences [J]. Computer Science, 2022, 49(6): 165-171. |
[11] | DENG Zhao-yang, ZHONG Guo-qiang, WANG Dong. Text Classification Based on Attention Gated Graph Neural Network [J]. Computer Science, 2022, 49(6): 326-334. |
[12] | YU Ai-xin, FENG Xiu-fang, SUN Jing-yu. Social Trust Recommendation Algorithm Combining Item Similarity [J]. Computer Science, 2022, 49(5): 144-151. |
[13] | LI Yong, WU Jing-peng, ZHANG Zhong-ying, ZHANG Qiang. Link Prediction for Node Featureless Networks Based on Faster Attention Mechanism [J]. Computer Science, 2022, 49(4): 43-48. |
[14] | CAO He-xin, ZHAO Liang, LI Xue-feng. Technical Research of Graph Neural Network for Text-to-SQL Parsing [J]. Computer Science, 2022, 49(4): 110-115. |
[15] | MIAO Xu-peng, ZHOU Yue, SHAO Ying-xia, CUI Bin. GSO:A GNN-based Deep Learning Computation Graph Substitutions Optimization Framework [J]. Computer Science, 2022, 49(3): 86-91. |
|