Computer Science ›› 2025, Vol. 52 ›› Issue (6): 129-138.doi: 10.11896/jsjkx.240500092
• Database & Big Data & Data Science • Previous Articles Next Articles
TAN Qiyin1, YU Jiong1,2, CHEN Zixin1
CLC Number:
[1]PANG G,SHEN C,CAO L,et al.Deep Learning for Anomaly Detection:A Review[J].ACM Computing Surveys,2021,54(2):38:1-38:38. [2]BAO Y,KE B,LI B,et al.Detecting Accounting Fraud in Publicly Traded U.S.Firms Using a Machine Learning Approach[J].Journal of Accounting Research,2020,58(1):199-235. [3]AL-HASHEDI K G,MAGALINGAM P.Financial fraud detection applying data mining techniques:A comprehensive review from 2009 to 2019[J].Computer Science Review,2021,40:100402. [4]SAHOO S R,GUPTA B B.Multiple features based approach for automatic fake news detection on social networks using deep learning[J].Applied Soft Computing,2021,100:106983. [5]ZHANG X,GHORBANI A A.An overview of online fakenews:Characterization,detection,and discussion[J].Information Processing & Management,2020,57(2):102025. [6]SAFIAN A,WU N,LIANG X.Development of an embedded piezoelectric transducer for bearing fault detection[J].Mechanical Systems and Signal Processing,2023,188:109987. [7]YAKHNI M F,CAUET S,SAKOUT A,et al.Variable speedinduction motors' fault detection based on transient motor current signatures analysis:A review[J].Mechanical Systems and Signal Processing,2023,184:109737. [8]LI C T,TSAI Y C,CHEN C Y,et al.Graph Neural Networks for Tabular Data Learning:A Survey with Taxonomy and Directions[J].arXiv:2401.02143,2024. [9]YANG X,LATECKI L J,POKRAJAC D.Outlier Detectionwith Globally Optimal Exemplar-Based GMM[M]//Procee-dings of the 2009 SIAM International Conference on Data Mining(SDM).Society for Industrial and Applied Mathematics,2009:145-154. [10]BREUNIG M M,KRIEGEL H P,NG R T,et al.LOF:identifying density-based local outliers[C]//Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data.New York:Association for Computing Machinery,2000:93-104. [11]JIANG S Y,AN Q B.Clustering-Based Outlier Detection Me-thod[C]//2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery.2008:429-433. [12]PAPADIMITRIOU S,KITAGAWA H,GIBBONS P B,et al.LOCI:fast outlier detection using the local correlation integral[C]//Proceedings 19th International Conference on Data Engineering(Cat.No.03CH37405).2003:315-326. [13]IKOTUN A M,EZUGWU A E,ABUALIGAH L,et al.K-means clustering algorithms:A comprehensive review,variants analysis,and advances in the era of big data[J].Information Sciences,2023,622:178-210. [14]DENG D.DBSCAN Clustering Algorithm Based on Density[C]//2020 7th International Forum on Electrical Engineering and Automation(IFEEA).2020:949-953. [15]CERVANTES J,GARCIA-LAMONT F,RODRÍGUEZ-MAZAHUA L,et al.A comprehensive survey on support vector machine classification:Applications,challenges and trends[J].Neurocomputing,2020,408:189-215. [16]LIU F T,TING K M,ZHOU Z H.Isolation Forest[C]//2008 Eighth IEEE International Conference on Data Mining.2008:413-422. [17]PANG G,CAO L,AGGARWAL C.Deep Learning for Anomaly Detection:Challenges,Methods,and Opportunities[C]//Proceedings of the 14th ACM International Conference on Web Search and Data Mining.New York:Association for Computing Machinery,2021:1127-1130. [18]GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Ge-nerative adversarial networks[J].Communications of the ACM,2020,63(11):139-144. [19]GIRIN L,LEGLAIVE S,BIE X,et al.Dynamical VariationalAutoencoders:A Comprehensive Review[J].Foundations and Trends© in Machine Learning,2021,15(1/2):1-175. [20]LIU Y,LI Z,ZHOU C,et al.Generative Adversarial ActiveLearning for Unsupervised Outlier Detection[J].IEEE Transactions on Knowledge and Data Engineering,2020,32(8):1517-1528. [21]DU X,CHEN J,YU J,et al.Generative adversarial nets for unsupervised outlier detection[J].Expert Systems with Applications,2024,236:121161. [22]WU Z,PAN S,CHEN F,et al.A Comprehensive Survey onGraph Neural Networks[J].IEEE Transactions on Neural Networks and Learning Systems,2021,32(1):4-24. [23]KHAN W,AL E.An Exhaustive Review on State-of-the-artTechniques for Anomaly Detection on Attributed Networks[J].Turkish Journal of Computer and Mathematics Education,2021,12(10):6707-6722. [24]DING K,LI J,LIU H.Interactive Anomaly Detection on Attributed Networks[C]//Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining.New York:Association for Computing Machinery,2019:357-365. [25]DING K,LI J,BHANUSHALI R,et al.Deep Anomaly Detection on Attributed Networks[C]//Proceedings of the 2019 SIAM International Conference on Data Mining(SDM).Society for Industrial and Applied Mathematics,2019:594-602. [26]LI Y,HUANG X,LI J,et al.SpecAE:Spectral AutoEncoder for Anomaly Detection in Attributed Networks[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management.New York:Association for Computing Machinery,2019:2233-2236. [27]NIE F,WANG X,HUANG H.Clustering and projected clustering with adaptive neighbors[C]//Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining.New York:Association for Computing Machinery,2014:977-986. [28]LONSO-GONZÁLEZ M,DÍAZ V G,PÉREZ B L,et al.Bearing Fault Diagnosis With Envelope Analysis and Machine Learning Approaches Using CWRU Dataset[J].IEEE Access,2023,11:57796-57805. [29]AN S,HU X,HUANG H,et al.ADBench:Anomaly Detection Benchmark[J].Advances in Neural Information Processing Systems,2022,35:32142-32159. [30]ODGE A,HOOI B,NG S K,et al.LUNAR:Unifying Local Outlier Detection Methods via Graph Neural Networks[J].Procee-dings of the AAAI Conference on Artificial Intelligence,2022,36(6):6737-6745. [31]YUAN X,ZHOU N,YU S,et al.Higher-order Structure Based Anomaly Detection on Attributed Networks[C]//2021 IEEE International Conference on Big Data(Big Data).2021:2691-2700. [32]ZHAO Y,NASRULLAH Z,LI Z.PyOD:A Python Toolbox for Scalable Outlier Detection[J].Journal of Machine Learning Research,2019,20(96):1-7. [33]LIU K,DOU Y,DING X,et al.PyGOD:A Python Library for Graph Outlier Detection[J].Journal of Machine Learning Research,2024,25(141):1-9. |
[1] | ZHOU Lei, SHI Huaifeng, YANG Kai, WANG Rui, LIU Chaofan. Intelligent Prediction of Network Traffic Based on Large Language Model [J]. Computer Science, 2025, 52(6A): 241100058-7. |
[2] | GUAN Xin, YANG Xueyong, YANG Xiaolin, MENG Xiangfu. Tumor Mutation Prediction Model of Lung Adenocarcinoma Based on Pathological [J]. Computer Science, 2025, 52(6A): 240700010-8. |
[3] | TAN Jiahui, WEN Chenyan, HUANG Wei, HU Kai. CT Image Segmentation of Intracranial Hemorrhage Based on ESC-TransUNet Network [J]. Computer Science, 2025, 52(6A): 240700030-9. |
[4] | RAN Qin, RUAN Xiaoli, XU Jing, LI Shaobo, HU Bingqi. Function Prediction of Therapeutic Peptides with Multi-coded Neural Networks Based on Projected Gradient Descent [J]. Computer Science, 2025, 52(6A): 240800024-6. |
[5] | CHEN Shijia, YE Jianyuan, GONG Xuan, ZENG Kang, NI Pengcheng. Aircraft Landing Gear Safety Pin Detection Algorithm Based on Improved YOlOv5s [J]. Computer Science, 2025, 52(6A): 240400189-7. |
[6] | GAO Junyi, ZHANG Wei, LI Zelin. YOLO-BFEPS:Efficient Attention-enhanced Cross-scale YOLOv10 Fire Detection Model [J]. Computer Science, 2025, 52(6A): 240800134-9. |
[7] | ZHANG Hang, WEI Shoulin, YIN Jibin. TalentDepth:A Monocular Depth Estimation Model for Complex Weather Scenarios Based onMultiscale Attention Mechanism [J]. Computer Science, 2025, 52(6A): 240900126-7. |
[8] | HUANG Hong, SU Han, MIN Peng. Small Target Detection Algorithm in UAV Images Integrating Multi-scale Features [J]. Computer Science, 2025, 52(6A): 240700097-5. |
[9] | WANG Baohui, GAO Zhan, XU Lin, TAN Yingjie. Research and Implementation of Mine Gas Concentration Prediction Algorithm Based on Deep Learning [J]. Computer Science, 2025, 52(6A): 240400188-7. |
[10] | LIU Chengming, LI Haixia, LI Shaochuan, LI Yinghao. Ensemble Learning Model for Stock Manipulation Detection Based on Multi-scale Data [J]. Computer Science, 2025, 52(6A): 240700108-8. |
[11] | FAN Xing, ZHOU Xiaohang, ZHANG Ning. Review on Methods and Applications of Short Text Similarity Measurement in Social Media Platforms [J]. Computer Science, 2025, 52(6A): 240400206-8. |
[12] | YANG Jixiang, JIANG Huiping, WANG Sen, MA Xuan. Research Progress and Challenges in Forest Fire Risk Prediction [J]. Computer Science, 2025, 52(6A): 240400177-8. |
[13] | WANG Jiamin, WU Wenhong, NIU Hengmao, SHI Bao, WU Nier, HAO Xu, ZHANG Chao, FU Rongsheng. Review of Concrete Defect Detection Methods Based on Deep Learning [J]. Computer Science, 2025, 52(6A): 240900137-12. |
[14] | HAO Xu, WU Wenhong, NIU Hengmao, SHI Bao, WU Nier, WANG Jiamin, CHU Hongkun. Survey of Man-Machine Distance Detection Method in Construction Site [J]. Computer Science, 2025, 52(6A): 240700098-10. |
[15] | ZOU Ling, ZHU Lei, DENG Yangjun, ZHANG Hongyan. Source Recording Device Verification Forensics of Digital Speech Based on End-to-End DeepLearning [J]. Computer Science, 2025, 52(6A): 240800028-7. |
|