Computer Science ›› 2025, Vol. 52 ›› Issue (6): 211-218.doi: 10.11896/jsjkx.240300060

• Computer Graphics & Multimedia • Previous Articles     Next Articles

Parameter Estimation of Intravoxel Incoherent Motion Based on Prior-driven

HU Guodong, YE Chen   

  1. Key Laboratory of Advanced Medical Imaging and Intelligent Computing of Guizhou Province(Guizhou University),Guiyang 550025,China
    Engineering Research Center of Text Computing & Cognitive Intelligence,Ministry of Education(Guizhou University),Guiyang 550025,China
    State Key Laboratory of Public Big Data(Guizhou University),Guiyang 550025,China
    College of Computer Science and Technology,Guizhou University,Guiyang 550025,China
  • Received:2024-03-11 Revised:2024-07-12 Online:2025-06-15 Published:2025-06-11
  • About author:HU Guodong,born in 1997,postgra-duate.His main research interests include machine learning and medical image analysis.
    YE Chen,born in 1985,Ph.D,associate professor.His main research interests include machine learning and medical image analysis.
  • Supported by:
    Guizhou Provincial Basic Research Program(Natural Science)(QianKeHe ZK [2023] 058),Doctor Foundation of Guizhou University(GuiDaRenJiHeZi(2021)17),National Natural Science Foundation of China(62161004),Natural Science Foundation of Guizhou Province(QianKeHe[2020]1Y255), Guizhou Provincial Science and Technology Projects(QianKeHe ZK[2021] Key 002) and Guizhou Provincial Science and Technology Projects(QianKeHe ZK[2022] 046).

Abstract: Intravoxel incoherent motion(IVIM) model leverages diffusion-weighted magnetic resonance imaging(DWI) to non-invasively ascertain the diffusion coefficient of water molecules in living tissue(D) and to gather blood perfusion data(F,D*).However,conventional methods for estimating IVIM parameters are particularly susceptible to noise,which poses a significant challenge in abdominal organs like the liver where respiratory motion is prevalent.This sensitivity often compromises the efficacy of parameter estimation.To enhance the robustness against noise,this study introduces a novel algorithm,the prior-driven neural network(PDNN).This approach harnesses prior knowledge derived from fully supervised training to inform and guide unsupervised learning phases.The robustness of PDNN model to noise is systematically assessed using root mean square errors(RMSE) across various signal-to-noise ratios.Additionally,the coefficient of variation(CV) distribution is employed to effectively differentiate between healthy and cirrhotic liver tissues,indicating significant variations(P<0.05) that underscore the model's diagnostic capability.The performance of the PDNN algorithm is compared with other advanced methods,including the nonlinear least squares approach,the voxel-based deep learning method IVIM-NEToptim,and SSUN,a 2D convolutional network grounded in domain-specific information.The results demonstrate that PDNN outperforms these methods in terms of noise robustness.Speci-fically,the RMSE values for the fitting parameters [D,F,D*] in the proposed model are 27.63%,23.72%,and 31.46% lower,respectively,than those recorded by the sub-optimal method.Moreover,PDNN not only preserves the integrity of tissue structure information but also effectively distinguishes between healthy and cirrhotic livers,highlighting its potential as a superior tool for clinical diagnosis and evaluation.

Key words: Intravoxel incoherent motion imaging, Parameter estimation, Cirrhosis, Deep learning

CLC Number: 

  • TP391
[1]LE BIHAN D,BRETON E,LALLEMAND D,et al.MR ima-ging of intravoxel incoherent motions:application to diffusion and perfusion in neurologic disorders[J].Radiology,1986,161(2):401-407.
[2]LE BIHAN D.Separation of diffusion and perfusion in intra-voxel incoherent motion MR imaging[J].Radiology,1988:168.
[3]LE BIHAN D.What can we see with IVIM MRI? [J].NeuroImage,Academic Press Inc,2019,187:56-67.
[4]PHONLAKRAI M,RAMADAN S,SIMPSON J,et al.Non-contrast based approach for liver function quantification using Bayesian-based intravoxel incoherent motion diffusion weighted imaging:A pilot study[J].Journal of Applied Clinical Medical Physics,John Wiley and Sons Ltd,2023,24(11):e14178.
[5]LUCIANI A,VIGNAUD A,CAVET M,et al.Liver cirrhosis:intravoxel incoherent motion MR imaging-pilot study.[J].Ra-diology,2008,249(3):891.
[6]PATEL J,SIGMUND E E,RUSINEK H,et al.Diagnosis of cirrhosis with intravoxel incoherent motion diffusion MRI and dynamic contrast-enhanced MRI alone and in combination:Preliminary experience[J].Journal of Magnetic Resonance Imaging,2010,31(3):589-600.
[7]BAGHERI M,GHORBANI F,AKBARI-LALIMI H,et al.Histopathological graded liver lesions:what role does the IVIM analysis method have?[J].Magnetic Resonance Materials in Physics,Biology and Medicine,Springer Science and Business Media Deutschland GmbH,2023,36(4):565-575.
[8]LI Y T,CERCUEIL J P,YUAN J,et al.Liver intravoxel incoherent motion(IVIM) magnetic resonance imaging:A comprehensive review of published data on normal values and applications for fibrosis and tumor evaluation[J].Quantitative Imaging in Medicine and Surgery,2017,7(1):59-78.
[9]PARK H J,SUNG Y S,LEE S S,et al.Intravoxel incoherent motion diffusion-weighted MRI of the abdomen:the effect of fitting algorithms on the accuracy and reliability of the parameters[J].Journal of Magnetic Resonance Imaging,2017,45(6):1637-1647.
[10]COHEN A D,SCHIEKE M C,HOHENWALTER M D,et al.The effect of low b-values on the intravoxel incoherent motion derived pseudodiffusion parameter in liver[J].Magnetic Resonance in Medicine,2015,73(1):306-311.
[11]CHO G Y,MOY L,ZHANG J L,et al.Comparison of fitting methods and b-value sampling strategies for intravoxel incoherent motion in breast cancer[J].Magnetic resonance in medicine,2015,74(4):1077-1085.
[12]MEEUS E M,NOVAK J,WITHEY S B,et al.Evaluation of intravoxel incoherent motion fitting methods in low-perfused tissue[J].Journal of Magnetic Resonance Imaging,2017,45(5):1325-1334.
[13]MERISAARI H,MOVAHEDI P,PEREZ I M,et al.Fittingmethods for intravoxel incoherent motion imaging of prostate cancer on region of interest level:Repeatability and gleason score prediction[J].Magnetic Resonance in Medicine,2017,77(3):1249.
[14]FUSCO R,SANSON M,PETRILLO A.A comparison of fitting algorithms for diffusion-weighted MRI data analysis using an intravoxel incoherent motion model[J].Magnetic Resonance Materials in Physics,Biology and Medicine,2017,30(2):113.
[15]GUSTAFSSON O,MONTELIUS M,STARCK G,et al.Impact of Prior Distribution and Central Tendency Measure on Bayesian IVIM Model Fitting[J].Magnetic Resonance in Medicine,2018,79(3):1674.
[16]ORTON M R,COLLINS D J,KOH D M,et al.Improved intravoxel incoherent motion analysis of diffusion weighted imaging by data driven Bayesian modeling[J].Magnetic Resonance in Medicine,2013,71(1):411-420.
[17]WHILE P T.A comparative simulation study of bayesian fitting approaches to intravoxel incoherent motion modeling in diffusion-weighted MRI[J].Magnetic Resonance in Medicine,2017,78(6):2373-2387.
[18]YE C,XU D,QIN Y,et al.Accurate intravoxel incoherent motion parameter estimation using Bayesian fitting and reduced number of low b-values[J].Medical Physics,2020,47(9):4372-4385.
[19]BERTLEFF M,DOMSCH S,WEINGÄRTNER S,et al.Diffusion parameter mapping with the combined intravoxel inco-herent motion and kurtosis model using artificial neural networks at 3T[J].NMR in Biomedicine,2017,30(12):e3833.
[20]BARBIERI S,GURNEY-CHAMPION O J,KLAASSEN R,et al.Deep learning how to fit an intravoxel incoherent motion model to diffusion-weighted MRI[J].Magnetic Resonance in Medicine,2020,83(1):312-321.
[21]KAANDORP M,BARBIERI S,KLAASSEN R,et al.Improved unsupervised physics-informed deep learning for intravoxel-incoherent motion modeling and evaluation in pancreatic cancer patients[J].Magnetic Resonance in Medicine,2021,86(4):2250-2265.
[22]VASYLECHKO S D,WARFIELD S K,AFACAN O,et al.Self-supervised IVIM DWI parameter estimation with a physics based forward model[J].Magnetic Resonance in Medicine,2022,87(2):904-914.
[23]HUANG H M.An unsupervised convolutional neural network method for estimation of intravoxel incoherent motion parameters[J].Physics in Medicine & Biology,IOP Publishing,2022,67(21):215018.
[24]RONNEBERGER O,FISCHER P,BROX T.U-net:Convolu-tional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015:18th International Conference,Munich,Germany,October 5-9,2015.2015:234-241.
[25]KAANDORP M P T,ZIJLSTRA F,FEDERAU C,et al.Deep learning intravoxel incoherent motion modeling:Exploring the impact of training features and learning strategies[J].Magnetic Resonance in Medicine,2023,90(1):312.
[26]MACKAY D.A practical Bayesian framework for backpropagation networks[J].Neural Computation,1992,4(3):448-472.
[27]KIRKPATRICK J,PASCANU R,RABINOWITZ N,et al.Overcoming catastrophic forgetting in neural networks[J].Proceedings of the national academy of sciences,National Acad Sciences,2017,114(13):3521-3526.
[28]PASCANU R,BENGIO Y.Revisiting Natural Gradient for Deep Networks[C]//ICLR 2014.2014:1655-1658.
[29]WÁNG Y X J,DENG M,LI Y T,et al.A Combined Use of Intravoxel Incoherent Motion MRI Parameters Can Differentiate Early-Stage Hepatitis-b Fibrotic Livers from Healthy Livers[J].SLAS TECHNOLOGY:Translating Life Sciences Innovation,2018,23(3):259-268.
[30]CIRITSIS A,ROSSI C,WURNIG M C,et al.Intravoxel Incoherent Motion:Model-Free Determination of Tissue Type in Abdominal Organs Using Machine Learning[J].Investigative Radiology,2017,52(12):747-757.
[31]WURNIG M C,DONATI O F,ULBRICH E,et al.Systematic analysis of the intravoxel incoherent motion threshold separating perfusion and diffusion effects:Proposal of a standardized algorithm[J].Magnetic Resonance in Medicine,2015,74(5):1414-1422.
[32]GAMBAROTA G,HITTI E,LEPORQ B,et al.Eliminating the blood-flow confounding effect in intravoxel incoherent motion(IVIM) using the non-negative least square analysis in liver[J].Magnetic Resonance in Medicine,2017,77(1):310-317.
[33]LEE W,KIM B,PARK H W.Quantification of intravoxel incoherent motion with optimized b-values using deep neural network[J].Magnetic Resonance in Medicine,2021,86(1):230-244.
[34]LEMKE A,STIELTJES B,SCHAD L R,et al.Toward an optimal distribution of b values for intravoxel incoherent motion ima-ging[J].Magnetic Resonance Imaging:An International Journal of Basic Research and Clinical Applications,2011,29(6):766-776.
[35]JALNEFJORD O,ANDERSSON M,MONTELIUS M,et al.Comparison of methods for estimation of the intravoxel incoherent motion(IVIM) diffusion coefficient(D) and perfusion fraction(f)[J].Magnetic Resonance Materials in Physics,Biology and Medicine,2018,31(6):715-723.
[1] ZHOU Lei, SHI Huaifeng, YANG Kai, WANG Rui, LIU Chaofan. Intelligent Prediction of Network Traffic Based on Large Language Model [J]. Computer Science, 2025, 52(6A): 241100058-7.
[2] GUAN Xin, YANG Xueyong, YANG Xiaolin, MENG Xiangfu. Tumor Mutation Prediction Model of Lung Adenocarcinoma Based on Pathological [J]. Computer Science, 2025, 52(6A): 240700010-8.
[3] TAN Jiahui, WEN Chenyan, HUANG Wei, HU Kai. CT Image Segmentation of Intracranial Hemorrhage Based on ESC-TransUNet Network [J]. Computer Science, 2025, 52(6A): 240700030-9.
[4] RAN Qin, RUAN Xiaoli, XU Jing, LI Shaobo, HU Bingqi. Function Prediction of Therapeutic Peptides with Multi-coded Neural Networks Based on Projected Gradient Descent [J]. Computer Science, 2025, 52(6A): 240800024-6.
[5] FAN Xing, ZHOU Xiaohang, ZHANG Ning. Review on Methods and Applications of Short Text Similarity Measurement in Social Media Platforms [J]. Computer Science, 2025, 52(6A): 240400206-8.
[6] YANG Jixiang, JIANG Huiping, WANG Sen, MA Xuan. Research Progress and Challenges in Forest Fire Risk Prediction [J]. Computer Science, 2025, 52(6A): 240400177-8.
[7] WANG Jiamin, WU Wenhong, NIU Hengmao, SHI Bao, WU Nier, HAO Xu, ZHANG Chao, FU Rongsheng. Review of Concrete Defect Detection Methods Based on Deep Learning [J]. Computer Science, 2025, 52(6A): 240900137-12.
[8] HAO Xu, WU Wenhong, NIU Hengmao, SHI Bao, WU Nier, WANG Jiamin, CHU Hongkun. Survey of Man-Machine Distance Detection Method in Construction Site [J]. Computer Science, 2025, 52(6A): 240700098-10.
[9] CHEN Shijia, YE Jianyuan, GONG Xuan, ZENG Kang, NI Pengcheng. Aircraft Landing Gear Safety Pin Detection Algorithm Based on Improved YOlOv5s [J]. Computer Science, 2025, 52(6A): 240400189-7.
[10] GAO Junyi, ZHANG Wei, LI Zelin. YOLO-BFEPS:Efficient Attention-enhanced Cross-scale YOLOv10 Fire Detection Model [J]. Computer Science, 2025, 52(6A): 240800134-9.
[11] ZHANG Hang, WEI Shoulin, YIN Jibin. TalentDepth:A Monocular Depth Estimation Model for Complex Weather Scenarios Based onMultiscale Attention Mechanism [J]. Computer Science, 2025, 52(6A): 240900126-7.
[12] HUANG Hong, SU Han, MIN Peng. Small Target Detection Algorithm in UAV Images Integrating Multi-scale Features [J]. Computer Science, 2025, 52(6A): 240700097-5.
[13] WANG Baohui, GAO Zhan, XU Lin, TAN Yingjie. Research and Implementation of Mine Gas Concentration Prediction Algorithm Based on Deep Learning [J]. Computer Science, 2025, 52(6A): 240400188-7.
[14] LIU Chengming, LI Haixia, LI Shaochuan, LI Yinghao. Ensemble Learning Model for Stock Manipulation Detection Based on Multi-scale Data [J]. Computer Science, 2025, 52(6A): 240700108-8.
[15] WANG Chanfei, YANG Jing, XU Yamei, HE Jiai. OFDM Index Modulation Signal Detection Based on Deep Learning [J]. Computer Science, 2025, 52(6A): 240900122-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!