Computer Science ›› 2025, Vol. 52 ›› Issue (6A): 240900092-6.doi: 10.11896/jsjkx.240900092
• Big Data & Data Science • Previous Articles Next Articles
LUAN Fangjun1, ZHANG Fengqiang2, YUAN Shuai3
CLC Number:
[1]CHENG H T,KOC L,HARMSEN J,et al.Wide & deep lear-ning for recommender systems[C]//Proceedings of the 1st Workshop on Deep Learning for Recommender Systems.2016:7-10. [2]HUANG T,ZHANG Z,ZHANG J.FiBiNET:combining featureimportance and bilinear feature interaction for click-through rate prediction[C]//Proceedings of the 13th ACM Conference on Cecommender Systems.2019:169-177. [3]CHEN B,WANG Y,LIU Z,et al.Enhancing Explicit and Implicit Feature Interactions via Information Sharing for Parallel Deep CTR Models[C]//Proceedings of the 30th ACM International Conference on Information and Knowledge Management.2021:3757-3766. [4]RICHARDSON M,DOMINOWSKA E,RAGNO R.Predicting clicks:estimating the click-through rate for new ads[C]//Proceedings of the 16th International Conference on World Wide Web.2007:521-530. [5]RENDLE S.Factorization machines[C]//2010 IEEE International Conference on Data Mining.IEEE,2010:995-1000. [6]GUO H,TANG R,YE Y,et al.DeepFM:a factorization-machine based neural network for CTR prediction[J].arXiv:1703.04247,2017. [7]LIAN J,ZHOU X,ZHANG F,et al.xdeepfm:Combining explicit and implicit feature interactions for recommender systems[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data NMining.2018:1754-1763. [8]WANG R,SHIVANNA R,CHENG D,et al.Dcn v2:Improved deep & cross network and practical lessons for web-scale lear-ning to rank systems[C]//Proceedings of the Web Conference 2021.2021:1785-1797. [9]WANG R,FU B,FU G,et al.Deep & cross network for ad click predictions[C]//Proceedings of the ADKDD’17.2017:1-7. [10]HE K,ZHANG X,REN S,et al.Deep residual learning forimage recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [11]HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:7132-7141. [12]SONG W,SHI C,XIAO Z,et al.Autoint:Automatic feature interaction learning via self-attentive neural networks[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management.2019:1161-1170. [13]YU Y,WANG Z,YUAN B.An Input-aware Factorization Machine for Sparse Prediction[C]//IJCAI.2019:1466-1472. [14]LU W,YU Y,CHANG Y,et al.A dual input-aware factorization machine for CTR prediction[C]//Proceedings of the Twenty-ninth International Conference on International Joint Confe-rences on Artificial Intelligence.2021:3139-3145. [15]WANG F,GU H,LI D,et al.MCRF:Enhancing CTR Prediction Models via Multi-channel Feature Refinement Framework[C]//International Conference on Database Systems for Advanced Applications.2022:359-374. [16]WANG H,LI N.A Click-Through Rate Prediction MethodBased on Cross-Importance of Multi-Order Features[J].arXiv:2405.08852,2021. [17]CHENG W,SHEN Y,HUANG L.Adaptive factorization net-work:Learning adaptive-order feature interactions[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:3609-3616. [18]WANG F,WANG Y,LI D,et al.Enhancing CTR predictionwith context-aware feature representation learning[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval.2022:343-352. [19]YANG B,LIANG J,ZHOU J W,et al.Research on an interpretable click-through rate prediction model based on attention mechanism[J].Computer Science,2023,50(5):12-20. [20]ZHAO W T,XUE S L,LIU T T.Recommendation for reducing irrelevant neighbors by combining item attribute collaborative signals[J].Computer Engineering and Applications,2024,60(7):101-107. [21]SUN Y,PAN J,ZHANG A,et al.FM2:Field-matrixed factori-zation machines for recommender systems[C]//Proceedings of the Web Conference 2021.2021:2828-2837. [22]PAN J,XU J,RUIZ AL,et al.Field-weighted factorization machines for click-through rate prediction in display advertising[C]//Proceedings of the 2018 World Wide Web Conference.2018:1349-1357. [23]WANG Z,SHE Q,ZHANG J.Masknet:Introducing feature-wise multiplication to CTR ranking models by instance-guided mask[J].arXiv:2102.07619,2021. [24]WANG F,GU H,LI D,et al.Towards deeper,lighter and interpretable cross network for ctr prediction[C]//Proceedings of the 32nd ACM International Conference on Information and Knowledge Management.2023:2523-2533. [25]ZHU J,DAI Q,SU L,et al.Bars:Towards open benchmarking for recommender systems[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval.2022:2912-2923. [26]ZHU J,LIU J,YANG S,et al.Open benchmarking for click-through rate prediction[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management.2021:2759-2769. |
[1] | LI Bo, MO Xian. Application of Large Language Models in Recommendation System [J]. Computer Science, 2025, 52(6A): 240400097-7. |
[2] | HUANG Chungan, WANG Guiping, WU Bo, BAI Xin. Diversified Recommendation Based on Light Graph Convolution Networks and ImplicitFeedback Enhancement [J]. Computer Science, 2024, 51(6A): 230900038-11. |
[3] | LIU Hui, JI Ke, CHEN Zhenxiang, SUN Runyuan, MA Kun, WU Jun. Malicious Attack Detection in Recommendation Systems Combining Graph Convolutional Neural Networks and Ensemble Methods [J]. Computer Science, 2024, 51(6A): 230700003-9. |
[4] | WANG Huaiqin, LUO Jian, WANG Haiyan. Feature Weight Perception-based Prediction of Virtual Network Function Resource Demands [J]. Computer Science, 2023, 50(9): 331-336. |
[5] | LI Haiming, ZHU Zhiheng, LIU Lei, GUO Chenkai. Multi-task Graph-embedding Deep Prediction Model for Mobile App Rating Recommendation [J]. Computer Science, 2023, 50(9): 160-167. |
[6] | YANG Bin, LIANG Jing, ZHOU Jiawei, ZHAO Mengci. Study on Interpretable Click-Through Rate Prediction Based on Attention Mechanism [J]. Computer Science, 2023, 50(5): 12-20. |
[7] | BAI Jing, GENG Xinyu, YI Liu, MU Yukun, CHEN Qin, SONG Jie. Improved Feature Interaction Algorithm Based on Meta-learning [J]. Computer Science, 2023, 50(11A): 230100087-8. |
[8] | ZHANG Xiaowan, DENG Qiujun, LIU Xianhui. Knowledge Graph Recommendation Algorithm Combined with Graph Attention Mechanism [J]. Computer Science, 2023, 50(11A): 230100057-7. |
[9] | JIN Bowen, WANG Qingmei, HU Chengzuo, WEI Jiacheng. Global Feature Enhanced for Session-based Recommendation [J]. Computer Science, 2023, 50(11A): 220800205-8. |
[10] | FAN Hongyu, ZHANG Yongku, MENG Xiangfu. Recommendation Method Based on Knowledge Graph Residual Attention Networks [J]. Computer Science, 2023, 50(11A): 220900180-7. |
[11] | MA Handa, FANG Yuqing. Dynamic Negative Sampling for Graph Convolution Network Based Collaborative Filtering Recommendation Model [J]. Computer Science, 2023, 50(11A): 230200149-7. |
[12] | HUANG Feihu, SHUAI Jianbo, PENG Jian. Collaborative Recommendation Based on Curriculum Learning and Graph Embedding [J]. Computer Science, 2023, 50(11A): 221100030-8. |
[13] | QIN Qi-qi, ZHANG Yue-qin, WANG Run-ze, ZHANG Ze-hua. Hierarchical Granulation Recommendation Method Based on Knowledge Graph [J]. Computer Science, 2022, 49(8): 64-69. |
[14] | FANG Yi-qiu, ZHANG Zhen-kun, GE Jun-wei. Cross-domain Recommendation Algorithm Based on Self-attention Mechanism and Transfer Learning [J]. Computer Science, 2022, 49(8): 70-77. |
[15] | SHUAI Jian-bo, WANG Jin-ce, HUANG Fei-hu, PENG Jian. Click-Through Rate Prediction Model Based on Neural Architecture Search [J]. Computer Science, 2022, 49(7): 10-17. |
|