Computer Science ›› 2022, Vol. 49 ›› Issue (8): 64-69.doi: 10.11896/jsjkx.210600111
• Database & Big Data & Data Science • Previous Articles Next Articles
QIN Qi-qi, ZHANG Yue-qin, WANG Run-ze, ZHANG Ze-hua
CLC Number:
[1]FOGELMAN-SOULIE F,MEI L,J ZHANG J,et al.Recommender Systems and Attributed Networks[M].John Wiley & Sons,Ltd,2020:4. [2]YU X,REN X,SUN Y Z,et al.Personalized entity recommendation:A heterogeneous information network approach[C]//WSDM.2014:283-292. [3]ZHAO H,YAO Q M,LI J D,et al.Metagraph-based recommendation fusion over heterogeneous information networks[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2017. [4]AI Q Y,AZIZI V,CHEN X,et al.Learning HeterogeneousKnowledge Base Embeddings for Explainable Recommendation[J].Algorithms,2018,11(9):137. [5]CAO Y X,WANG X,HE X N,et al.Unifying Knowledge Graph Learning and Recommendation:Towards a Better Understan-ding of User Preferences[C]//WWW’19.ACM,2019:151-161. [6]SUN Z,GUO Q,YANG J,et al.Research commentary on reco-mmendations with side information:A survey and research directions[J].Electronic Commerce Research and Applications,2019,37:100879. [7]WANG X,WANG D X,XU C R,et al.Explainable Reasoningover Knowledge Graphs for Recommendation[C]//AAAI.2019. [8]HU B B,SHI C,ZHAO W X,et al.Leveraging Meta-path-based Context for Top-N Recommendation with A Neural Co-Attention Model[C]//SIGKDD.2018:1531-1540. [9]YU X,REN X,GU Q Q,et al.Collaborative filtering with entity similarity regularization in heterogeneous information networks[C]//IJCAI 27.2013. [10]LIU Q,LI Y,DUAN H,et al.Knowledge graph construction techniques[J]. Journal of Computer Research and Development,2016,53(3):582-600. [11]DODWAD P R,LOBO L.A context-aware recommender system using ontology based approach for travel applications[J].International Journal of Advanced Engineering and Nano Techno-logy,2014,1(10):8-12. [12]MORENO A,VALLS A,ISERN D,et al.SigTur/E-destination:Ontology based personalized recommendation of tourism and leisure activities[J].Engineering Applications of Artificial Intelligence,2013,26(1):633-651. [13]DI NOIA T,MIRIZZI R,OSTUNI V C,et al.Linked open data to support content-based recommender systems[C]//Procee-dings of the 8th International Conference on Semantic Systems.Graz,Austria:ACM,2012. [14]ZADAH L A.Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic[J].Fuzzy Sets and Systems,1997,90(2):111-127. [15]YAO Y Y,NING Z.Potential Applications of Granular Computing in Knowledge Discovery and Data Mining[C]//Proceedings of World Multiconference on Systemics, Cybernetics and Informatics.1999:573-580. [16]ZHANG B,ZHANG L.The Theory and Application of Problem Solving.[M].Beijing:Tsinghua University Press,1990. [17]PEDRYCZ W.Granular Computing:An Emerging paradigm.Hardcover[M].Physica-Verlag,2001. [18]MIAO D Q,WANG G Y,LIU Q,et al.Granular Computing:Past,Present and Prospects[M].Beijing:Science Press,2007. [19]WU W Z,ZHANG W X.Neighborhood operator systems and approximations [J].Information Sciences,2002,114(1/2/3/4):201-217. [20]QIAN Y,LIANG X,WANG Q.et al.Local rough set:a solution to rough data analysis in big data[J].International Journal of Approximate Reasoning,2018,97:38-63. [21]ZHANG F Z,YUAN N J,LIAN D,et al.Collaborative Know-ledge Base Embedding for Recommender Systems[C]//KDD’16.ACM,2016:353-362. [22]LIN Y K,LIU Z Y,SUN M S,et al.Learning entity and relation embeddings for knowledge graph completion[C]//AAAI.2015:2181-2187. [23]WANG H W,ZHANG F Z,WANG J L,et al.RippleNet:Propagating User Preferences on the Knowledge Graph for Recommender Systems[C]//CIKM.2018:417-426. [24]WANG H W,ZHANG F Z,ZHAO M,et al.Multi-task feature learning for knowledge graph enhanced recommendation[C]//WWW’19.ACM,2019:2000-2010. [25]KIPF T N,WELLING M.Semi-Supervised Classification with Graph Convolutional Networks[C]//ICLR’17.2017. [26]VELICKOVIC P,CUCURULL G,CASANOVA A,et al.Graph Attention Networks[C]//ICLR.2018. [27]HAMILTON W L,YING R,LESKOVEC J.Inductive Representation Learning on Large Graphs[J].arXiv:1706.02216,2017. [28]BORDES A,USUNIER N,GARCIA-DURAN A,et al.Translating embeddings for modeling multi-relational data[C]//NeurIPS.2013:2787-2795. [29]WANG H W,ZHANG F Z,ZHANG M D,et al.Knowledge graph convolutional networks for recommender systems with label smoothness regularization[C]//KDD’19.2019. |
[1] | XU Yong-xin, ZHAO Jun-feng, WANG Ya-sha, XIE Bing, YANG Kai. Temporal Knowledge Graph Representation Learning [J]. Computer Science, 2022, 49(9): 162-171. |
[2] | RAO Zhi-shuang, JIA Zhen, ZHANG Fan, LI Tian-rui. Key-Value Relational Memory Networks for Question Answering over Knowledge Graph [J]. Computer Science, 2022, 49(9): 202-207. |
[3] | WU Zi-yi, LI Shao-mei, JIANG Meng-han, ZHANG Jian-peng. Ontology Alignment Method Based on Self-attention [J]. Computer Science, 2022, 49(9): 215-220. |
[4] | KONG Shi-ming, FENG Yong, ZHANG Jia-yun. Multi-level Inheritance Influence Calculation and Generalization Based on Knowledge Graph [J]. Computer Science, 2022, 49(9): 221-227. |
[5] | FANG Yi-qiu, ZHANG Zhen-kun, GE Jun-wei. Cross-domain Recommendation Algorithm Based on Self-attention Mechanism and Transfer Learning [J]. Computer Science, 2022, 49(8): 70-77. |
[6] | SHUAI Jian-bo, WANG Jin-ce, HUANG Fei-hu, PENG Jian. Click-Through Rate Prediction Model Based on Neural Architecture Search [J]. Computer Science, 2022, 49(7): 10-17. |
[7] | QI Xiu-xiu, WANG Jia-hao, LI Wen-xiong, ZHOU Fan. Fusion Algorithm for Matrix Completion Prediction Based on Probabilistic Meta-learning [J]. Computer Science, 2022, 49(7): 18-24. |
[8] | WANG Jie, LI Xiao-nan, LI Guan-yu. Adaptive Attention-based Knowledge Graph Completion [J]. Computer Science, 2022, 49(7): 204-211. |
[9] | CAI Xiao-juan, TAN Wen-an. Improved Collaborative Filtering Algorithm Combining Similarity and Trust [J]. Computer Science, 2022, 49(6A): 238-241. |
[10] | HE Yi-chen, MAO Yi-jun, XIE Xian-fen, GU Wan-rong. Matrix Transformation and Factorization Based on Graph Partitioning by Vertex Separator for Recommendation [J]. Computer Science, 2022, 49(6A): 272-279. |
[11] | MA Rui-xin, LI Ze-yang, CHEN Zhi-kui, ZHAO Liang. Review of Reasoning on Knowledge Graph [J]. Computer Science, 2022, 49(6A): 74-85. |
[12] | DENG Kai, YANG Pin, LI Yi-zhou, YANG Xing, ZENG Fan-rui, ZHANG Zhen-yu. Fast and Transmissible Domain Knowledge Graph Construction Method [J]. Computer Science, 2022, 49(6A): 100-108. |
[13] | DU Xiao-ming, YUAN Qing-bo, YANG Fan, YAO Yi, JIANG Xiang. Construction of Named Entity Recognition Corpus in Field of Military Command and Control Support [J]. Computer Science, 2022, 49(6A): 133-139. |
[14] | HONG Zhi-li, LAI Jun, CAO Lei, CHEN Xi-liang, XU Zhi-xiong. Study on Intelligent Recommendation Method of Dueling Network Reinforcement Learning Based on Regret Exploration [J]. Computer Science, 2022, 49(6): 149-157. |
[15] | XIONG Zhong-min, SHU Gui-wen, GUO Huai-yu. Graph Neural Network Recommendation Model Integrating User Preferences [J]. Computer Science, 2022, 49(6): 165-171. |
|