Computer Science ›› 2023, Vol. 50 ›› Issue (11A): 230100087-8.doi: 10.11896/jsjkx.230100087
• Big Data & Data Science • Previous Articles Next Articles
BAI Jing, GENG Xinyu, YI Liu, MU Yukun, CHEN Qin, SONG Jie
CLC Number:
[1]RICHARDSON M,DOMINOWSKA E,RAGNO R.Predicting Clicks:Estimating the Click-through Rate for New Ads[C]//Proceedings of the 16th International Conference on World Wide Web.Banff,Alberta,Canada:Association for Computing Machinery,2007:521-530. [2]MCMAHAN H B,HOLT G,SCULLEY D,et al.Ad Click Prediction:a View from the Trenches[C]// Proceedings of the 19th ACM SIGKDD International Conference on KnowledgeDisco-very and Data Mining.2013. [3]RENDLE S.Factorization Machines[C]//2010 IEEE International Conference on Data Mining.Sydney,NSW,Australia:IEEE,2010:995-1000. [4]CHANG Y W,HSIEH C J,CHANG K W,et al.Training and testing low-degree polynomial data mappings via linear SVM[J].The Journal of Machine Learning Research,2010,8(11):1471-1490. [5]BLONDEL M,FUJINO A,UEDA N,et al.Higher-order FactorizationMachines[C]//Advances in Neural Information Processing Systems.2016:3351-3359. [6]HE X,PAN J,JIN O,et al.Practical Lessons from PredictingClicks on Ads at Facebook[C]//Proceedings of the Eighth International Workshop on Data Mining for Online Advertising.New York,NY,USA:Association for Computing Machinery,2014:1-9. [7]ZHANG W,QIN J,GUO W,et al.Deep learning for click-through rate estimation[J].arXiv:2104.10584,2021. [8]SHAN Y,HOENS T R,JIAO J,et al.Deep Crossing:Web-Scale Modeling without Manually Crafted Combinatorial Features[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,NY,USA:Association for Computing Machinery,2016:255-262. [9]CHENG H T,KOC L,HARMSEN J,et al.Wide & DeepLearning for Recommender Systems[C]//Proceedings of the 1st Workshop on Deep Learning for Recommender Systems.New York,USA:Association for Computing Machinery,2016:7-10. [10]ZHANG W,DU T,WANG J.Deep Learning over Multi-field Categorical Data[C]//Advances in Information Retrieval.Cham:Springer International Publishing,2016:45-57. [11]QU Y,CAI H,REN K,et al.Product-Based Neural Networksfor User Response Prediction[C]//2016 IEEE 16th Interna-tional Conference on Data Mining(ICDM).Barcelona,Spain:IEEE,2016:1149-1154. [12]LIU B,TANG R,CHEN Y,et al.Feature Generation by Convolutional Neural Network for Click-through Rate Prediction[C]//The World Wide Web Conference.2019:1119-1129. [13]SONG W,SHI C,XIAO Z,et al.Autoint:Automatic Feature Interaction Learning via Self-attentive Neural Networks[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management.2019:1161-1170. [14]LI Z,CHENG W,CHEN Y,et al.Interpretable Click-throughRate Predictionthrough Hierarchical Attention[C]//Procee-dings of the 13th International Conference on Web Search and Data Mining.2020:313-321. [15]YANG Y,ZHAI P.Click-through rate prediction in online advertising:A literature review[J].Information Processing & Management,2022,59(2):102853. [16]THRUN S,PRATT L.Learning to learn:Introduction andoverview[M]//Springer,Boston,MA,1998:3-17. [17]WANG J X.Meta-learning in natural and artificial intelligence[J].Current Opinion in Behavioral Sciences,2021,38:90-95. [18]HOSPEDALES T,ANTONIOU A,MICAELLI P,et al.Meta-learning in neural networks:A survey[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2021,44(9):5149-5169. [19]FINN C,ABBEEL P,LEVINE S.Model-agnostic Meta-learning for Fast Adaptationof Deep Networks[C]//International Conference on Machine Learning.PMLR,2017:1126-1135. [20]TAKIKAWA T,ACUNA D,JAMPANI V,et al.Gated-scnn:Gated Shape Cnns for Semantic Segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computervision.2019:5229-5238. [21]LI C,LI L,QI J.A Self-attentive Model with Gate Mechanism for Spoken Language Understanding[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.2018:3824-3833. [22]YANG L,ZHONG J,ZHANG Y,et al.An improving faster-RCNN with multi-attention ResNet for small target detection in intelligent autonomous transport with 6G[J].IEEE Transactions on Intelligent Transportation Systems,2022,24(7):7717-7725. [23]JUAN Y,ZHUANG Y,CHIN W S,et al.Field-aware Factorization Machines for CTR Prediction[C]//Proceedings of the 10th ACM Conference on Recommender Systems.New York,NY,USA:Association for Computing Machinery,2016:43-50. [24]GUO H,TANG R,YE Y,et al.DeepFM:A Factorization-Machine based NeuralNetwork for CTR Prediction[C]//Procee-dings of the Twenty-Sixth International Joint Conference on Artificial Intelligence.Melbourne,Australia:AAAI Press,2017:1725-1731. [25]WANG R,FU B,FU G,et al.Deep & Cross Network for Ad Click Predictions[C]//Proceedings of the 23rd ACM SIGKDD Conference on Knowledge Discovery and Data Mining.New York,NY,USA:Association for Computing Machinery,2017. [26]LIAN J,ZHOU X,ZHANG F,et al.xdeepfm:Combining Explicit and Implicit Feature Interactions for Recommender Systems[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2018:1754-1763. |
[1] | WANG Huaiqin, LUO Jian, WANG Haiyan. Feature Weight Perception-based Prediction of Virtual Network Function Resource Demands [J]. Computer Science, 2023, 50(9): 331-336. |
[2] | HUANG Lu, NI Lyu, JIN Cheqing. Rectifying Dual Bias for Recommendation [J]. Computer Science, 2023, 50(9): 152-159. |
[3] | JIN Tiancheng, DOU Liang, ZHANG Wei, XIAO Chunyun, LIU Feng, ZHOU Aimin. OJ Exercise Recommendation Model Based on Deep Reinforcement Learning and Program Analysis [J]. Computer Science, 2023, 50(8): 58-67. |
[4] | WANG Jiahao, ZHONG Xin, LI Wenxiong, ZHAO Dexin. Human Activity Recognition with Meta-learning and Attention [J]. Computer Science, 2023, 50(8): 193-201. |
[5] | ZHU Wentao, LIU Wei, LIANG Shangsong, ZHU Huaijie, YIN Jian. Variational Continuous Bayesian Meta-learning Based Algorithm for Recommendation [J]. Computer Science, 2023, 50(7): 66-71. |
[6] | YANG Bin, LIANG Jing, ZHOU Jiawei, ZHAO Mengci. Study on Interpretable Click-Through Rate Prediction Based on Attention Mechanism [J]. Computer Science, 2023, 50(5): 12-20. |
[7] | SHANG Di, LYU Yanfeng, QIAO Hong. Incremental Object Detection Inspired by Memory Mechanisms in Brain [J]. Computer Science, 2023, 50(2): 267-274. |
[8] | ZHU Jun, HAN Lixin, ZONG Ping, XU Yiqing, XIA Ji’an, TANG Ming. Natural Noise Filtering Algorithm for Point-of-Interest Recommender Systems [J]. Computer Science, 2023, 50(11): 132-142. |
[9] | HAO Jingyu, WEN Jingxuan, LIU Huafeng, JING Liping, YU Jian. Deep Disentangled Collaborative Filtering with Graph Global Information [J]. Computer Science, 2023, 50(1): 41-51. |
[10] | CHENG Zhang-tao, ZHONG Ting, ZHANG Sheng-ming, ZHOU Fan. Survey of Recommender Systems Based on Graph Learning [J]. Computer Science, 2022, 49(9): 1-13. |
[11] | WANG Guan-yu, ZHONG Ting, FENG Yu, ZHOU Fan. Collaborative Filtering Recommendation Method Based on Vector Quantization Coding [J]. Computer Science, 2022, 49(9): 48-54. |
[12] | QI Xiu-xiu, WANG Jia-hao, LI Wen-xiong, ZHOU Fan. Fusion Algorithm for Matrix Completion Prediction Based on Probabilistic Meta-learning [J]. Computer Science, 2022, 49(7): 18-24. |
[13] | GUO Liang, YANG Xing-yao, YU Jiong, HAN Chen, HUANG Zhong-hao. Hybrid Recommender System Based on Attention Mechanisms and Gating Network [J]. Computer Science, 2022, 49(6): 158-164. |
[14] | CHEN Zhuang, ZOU Hai-tao, ZHENG Shang, YU Hua-long, GAO Shang. Diversity Recommendation Algorithm Based on User Coverage and Rating Differences [J]. Computer Science, 2022, 49(5): 159-164. |
[15] | ZHOU Ying, CHANG Ming-xin, YE Hong, ZHANG Yan. Super Resolution Reconstruction Method of Solar Panel Defect Images Based on Meta-transfer [J]. Computer Science, 2022, 49(3): 185-191. |
|