Computer Science ›› 2025, Vol. 52 ›› Issue (11A): 241100137-10.doi: 10.11896/jsjkx.241100137
• Image Processing & Multimedia Technology • Previous Articles Next Articles
ZHANG Fan1, LI Ang1,2
CLC Number:
| [1]PARAMANANDHAM N,RAJENDIRAN K.Infrared and visible image fusion using discrete cosine transform and swarm intelligence for surveillance applications[J].Infrared Physics and Technology,2018,88:13-22. [2]GAO H B,CHENG B,WANG J Q,et al.Object Classification Using CNN-Based Fusion of Vision and LIDAR in Autonomous Vehicle Environment[J].IEEE Transactions on Industrial Informatics,2018,14(9):4224-4231. [3]ZHOU Z,WANG B,LI S,et al.Perceptual fusion of infrared and visible images through a hybrid multi-scale decomposition with Gaussian and bilateral filters[J].Information Fusion,2016,30:15-26. [4]LI H,QI X,XIE W.Fast infrared and visible image fusion with structural decomposition[J].Knowledge-Based Systems,2020,204:106182. [5]MA J,ZHOU Y.Infrared and visible image fusion via gradientlet filter[J].Computer Vision and Image Understanding,2020,197/198:103016. [6]LI H,WU X J,KITTLER J.MDLatLRR:A novel decomposition method for infrared and visible image fusion[J].IEEE Transactions on Image Processing,2020,29:4733-4746. [7]CHEN J,LI X,LUO L,et al.Infrared and visible image fusion based on target-enhanced multiscale transform decomposition[J].Information Sciences,2020:508:64-78. [8]CVEJIC N,BULL D,CANAGARAJAH N.Region-Based Multimodal Image Fusion Using ICA Bases[J].IEEE Sensors Journal,2007,7(5):743-751. [9]LIU Y,CHEN X,WARD K R,et al.Image Fusion With Convolutional Sparse Representation[J].IEEE Signal Processing Letters,2016,23(12):1882-1886. [10]MA J,CHEN C,LI C,et al.Infrared and visible image fusion via gradient transfer and total variation minimization[J].Information Fusion,2016,31:100-109. [11]LI S,KANG X,FANG L,et al.Pixel-level image fusion:A survey of the state of the art[J].Information Fusion,2017,33:100-112. [12]LI H,WU X.DenseFuse:A Fusion Approach to Infrared andVisible Images[J].IEEE Transactions on Image Processing,2019,28(5):2614-2623. [13]LI H,WU J X,DURRANI T.NestFuse:An Infrared and Visible Image Fusion Architecture based on Nest Connection and Spatial/Channel Attention Models[J].IEEE Transactions on Instrumentation and Measurement,2020,69(12):9645-9656. [14]LI H,WU X J,KITTLER J.RFN-Nest:An end-to-end residual fusion network for infrared and visible images[J].Information Fusion,2021,73:72-86. [15]ZHANG Y,LIU Y,SUN P,et al.IFCNN:A general image fusion framework based on convolutional neural network[J].Information Fusion,2020,54:99-118. [16]TANG L,ZHANG H,XU H,et al.Rethinking the necessity of image fusion in high-level vision tasks:A practical infrared and visible image fusion network based on progressive semantic injection and scene fidelity[J].Information Fusion,2023,99:101870. [17]LI D Y,NIE R C,PAN L N,et al.UMGN:An Infrared and Visible Image Fusion Network Based on Unsupervised Significance MaskGuidance[J].Computer Science,2024,51(6A):230600170-5. [18]TANG L,XIANG X,ZHANG H,et al.DIVFusion:Darkness-free infrared and visible image fusion[J].Information Fusion,2023,91:477-493. [19]MA J,YU W,LIANG P,et al.FusionGAN:A generative adversarial network for infrared and visible image fusion[J].Information Fusion,2018,48:11-26. [20]MA J,XU H,JIANG J,et al.DDcGAN:A Dual-discriminator Conditional Generative Adversarial Network for Multi-resolution Image Fusion.[J].IEEE Transactions on Image Proces-sing,2020,29:4980-4995. [21]ZHANG G D,CHEN Z H,SHENG B.Infrared Small Target Detection Based on Dilated Convolutional Conditional GenerativeAdversarial Networks[J].Computer Science,2024,51(2):151-160. [22]MA J,ZHANG H,SHAO Z,et al.GANMcC:A Generative Adversarial Network With Multiclassification Constraints for Infrared and Visible Image Fusion[J].IEEE Transactions on Instrumentation and Measurement,2021,70:1-14. [23]TOET A.The TNO Multiband Image Data Collection[J].Data in Brief,2017,15:249-251. [24]XU H,MA J,JIANG J,et al.U2Fusion:A Unified Unsupervised Image Fusion Network[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,44(1):502-518. [25]LIU J,FAN X,HUANG Z,et alTarget-aware dual adversarial learning and a multi-scenario multi-modality benchmark to fuse infrared and visible for object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:5802-5811. [26]LIU Y,JIN J,WANG Q,et al.Region level based multi-focus image fusion using quaternion wavelet and normalized cut[J].Signal Processing,2014,97:9-30. [27]TOET A.Image fusion by a ratio of low-pass pyramid[J].Pattern Recognition Letters,1989,9(4):245-253. [28]BHATNAGAR G,WU Q M J,LIU Z.Directive contrast based multimodal medical image fusion in NSCT domain[J].IEEE Transactions on Multimedia,2013,15(5):1014-1024. [29]SURYANARAYANA G,KONDAMURI R S,YANG J.Lear-ning infrared degradations for coherent visible image fusion in the undecimated dual-tree complex wavelet domain[J].Infrared Physics and Technology,2024:143:105596. [30]LIU Z,TSUKADA K,HANASAKI K,et al.Image fusion by using steerable pyramid[J].Pattern Recognition Letters,2001,22(9):929-939. [31]LI L,SHI Y,LV M,et al.Infrared and Visible Image Fusion via Sparse Representation and Guided Filtering in Laplacian Pyramid Domain[J].Remote Sensing,2024,16(20):3804. [32]XIANG T,YAN L,GAO R.A fusion algorithm for infrared and visible images based on adaptive dual-channel unit-linking PCNN in NSCT domain[J].Infrared Physics & Technology,2015,69:53-61. [33]YIGUO Y,DAN L,YANYAN L,et al.Multispectral and hyperspectral images fusion based on subspace representation and nonlocal low-rank regularization[J].International Journal of Remote Sensing,2024,45(9):2965-2984. [34]CHEN Y,ZHOU F C,DONG K.Dual distinguisher infrared and visible light image fusion with enhanced visual significance [J/OL].Journal of Beijing University of Aeronautics and Astronautics,1-12[2024-11-19].https://doi.org/10.13700/j.bh.1001-5965.2024.0072. [35]LIU C H,QI Y,DING W R.Infrared and visible image fusion method based on saliency detection in sparse domain[J].Infrared Physics & Technology,2017,83:94-102. [36]NAIDU V P S.Hybrid DDCT-PCA based multi sensor image fusion[J].Journal of Optics,2014,43:48-61. [37]PRABHAKAR K R,SRIKAR V S,BABU R V.Deepfuse:Adeep unsupervised approach for exposure fusion with extreme exposure image pairs[C]//Proceedings of the IEEE International Conference on Computer Vision.2017:4714-4722. [38]SHI Y,GANG J,XI L,et al.TCPMFNet:An infrared and visible image fusion network with composite auto encoder and transformer-convolutional parallel mixed fusion strategy[J].Infrared Physics and Technology,2022,127:104405. [39]ZHANG H,XU H,XIAO Y,et al.Rethinking the image fusion:A fast unified image fusion network based on proportional maintenance of gradient and intensity[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:12797-12804. [40]MA J,TANG L,XU M,et al.STDFusionNet:An infrared and visible image fusion network based on salient target detection[J].IEEE Transactions on Instrumentation and Measurement,2021,70:1-13. [41]WANG W,WEI C,YANG W,et al.Gladnet:Low-light en-hancement network with global awareness[C]//2018 13th IEEE International Conference on Automatic Face & Gesture recognition(FG 2018).IEEE,2018:751-755. [42]GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Ge-nerative adversarial nets[C]//Advances in Neural Information Processing Systems.2014. [43]ZHANG Y,YU J,WANG Y,et al.Small object detection based on hierarchical attention mechanism and multi-scale separable detection[J].IET Image Processing,2023,17(14):3986-3999. [44]DENG Z,HU X,ZHU L,et al.R3net:Recurrent residual refinement network for saliency detection[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence.Menlo Park,CA:AAAI,2018:684-690. [45]LI A,NI S,CHEN Y,et al.Cross-modal object detection viaUAV[J].IEEE Transactions on Vehicular Technology,2023,72(8):10894-10905. |
| [1] | LIU Wei, XU Yong, FANG Juan, LI Cheng, ZHU Yujun, FANG Qun, HE Xin. Multimodal Air-writing Gesture Recognition Based on Radar-Vision Fusion [J]. Computer Science, 2025, 52(9): 259-268. |
| [2] | PENG Jiao, HE Yue, SHANG Xiaoran, HU Saier, ZHANG Bo, CHANG Yongjuan, OU Zhonghong, LU Yanyan, JIANG dan, LIU Yaduo. Text-Dynamic Image Cross-modal Retrieval Algorithm Based on Progressive Prototype Matching [J]. Computer Science, 2025, 52(9): 276-281. |
| [3] | GAO Long, LI Yang, WANG Suge. Sentiment Classification Method Based on Stepwise Cooperative Fusion Representation [J]. Computer Science, 2025, 52(9): 313-319. |
| [4] | SHEN Tao, ZHANG Xiuzai, XU Dai. Improved RT-DETR Algorithm for Small Object Detection in Remote Sensing Images [J]. Computer Science, 2025, 52(8): 214-221. |
| [5] | LIU Jian, YAO Renyuan, GAO Nan, LIANG Ronghua, CHEN Peng. VSRI:Visual Semantic Relational Interactor for Image Caption [J]. Computer Science, 2025, 52(8): 222-231. |
| [6] | LIU Yajun, JI Qingge. Pedestrian Trajectory Prediction Based on Motion Patterns and Time-Frequency Domain Fusion [J]. Computer Science, 2025, 52(7): 92-102. |
| [7] | LIU Chengzhuang, ZHAI Sulan, LIU Haiqing, WANG Kunpeng. Weakly-aligned RGBT Salient Object Detection Based on Multi-modal Feature Alignment [J]. Computer Science, 2025, 52(7): 142-150. |
| [8] | ZHUANG Jianjun, WAN Li. SCF U2-Net:Lightweight U2-Net Improved Method for Breast Ultrasound Lesion SegmentationCombined with Fuzzy Logic [J]. Computer Science, 2025, 52(7): 161-169. |
| [9] | XU Yongwei, REN Haopan, WANG Pengfei. Object Detection Algorithm Based on YOLOv8 Enhancement and Its Application Norms [J]. Computer Science, 2025, 52(7): 189-200. |
| [10] | ZHENG Cheng, YANG Nan. Aspect-based Sentiment Analysis Based on Syntax,Semantics and Affective Knowledge [J]. Computer Science, 2025, 52(7): 218-225. |
| [11] | WANG Youkang, CHENG Chunling. Multimodal Sentiment Analysis Model Based on Cross-modal Unidirectional Weighting [J]. Computer Science, 2025, 52(7): 226-232. |
| [12] | KONG Yinling, WANG Zhongqing, WANG Hongling. Study on Opinion Summarization Incorporating Evaluation Object Information [J]. Computer Science, 2025, 52(7): 233-240. |
| [13] | GUAN Xin, YANG Xueyong, YANG Xiaolin, MENG Xiangfu. Tumor Mutation Prediction Model of Lung Adenocarcinoma Based on Pathological [J]. Computer Science, 2025, 52(6A): 240700010-8. |
| [14] | TAN Jiahui, WEN Chenyan, HUANG Wei, HU Kai. CT Image Segmentation of Intracranial Hemorrhage Based on ESC-TransUNet Network [J]. Computer Science, 2025, 52(6A): 240700030-9. |
| [15] | CHEN Xianglong, LI Haijun. LST-ARBunet:An Improved Deep Learning Algorithm for Nodule Segmentation in Lung CT Images [J]. Computer Science, 2025, 52(6A): 240600020-10. |
|
||