Computer Science ›› 2025, Vol. 52 ›› Issue (11A): 250300040-9.doi: 10.11896/jsjkx.250300040
• Image Processing & Multimedia Technology • Previous Articles Next Articles
JIA Hongjun1, ZHANG Hailong3, LI Jingguo1, ZHANG Huimin4, HAN Chenggong4, JIANG He2,4
CLC Number:
| [1]YANG R,DING Z,YANG J,et al.Simulation system of mine unmanned vehicle based on parallel control theory[J].Industry and Mine Automation,2022,48(11):180-183. [2]IZADINIA H,SHAN Q,SEITS S.IM2CAD[C]//IEEE Confe-rence on Computer Vision and Pattern Recognition.IEEE Press,2017:2422-2431. [3]LADICKY L,SHI J,POLLEFEYS M.Pulling things out of perspective [C]//IEEE Conference on Computer Vision and Pattern Recognition.2014:89-96. [4]GEIGER A,LENZ P,STILLER C,et al.Vision meets robotics:The kitti dataset [J].The International Journal of Robotics Research,2013,32(11):1231-1237. [5]LUO Q,GUO T,YAO Y.Laser ranging cooperative target for Cubesa[J].Optics and Precision Engineering,2017,25(7):1705-1713. [6]CHENG Y,ZHAO Y,LUO Z,et al.Uncertainty evaluation analysis of surface features in surface structured light measurement[J].Optics and Precision Engineering,2022,30(17):2039-2049. [7]VARMA A,CHAWLA H,ZONOOZ B,et al.Transformers inSelf-Supervised Monocular Depth Estimation with Unknown Camera Intrinsics[J].arXiv:2202.03131,2022. [8]NING Z,FRANCESCO N,GEORGE V.Norman Kerle[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR).2023:18537-18546. [9]XIANG X,WANG Y,ZHANG L,et al.Self-supervised Mono-cular Depth Estimation with Large Kernel Attention[J].arXiv:2409.17895,2024. [10]CHEN R,LUO H,ZHAO F,et al.Structure-Centric RobustMonocular Depth Estimation viaKnowledge Distillation[C]//Asian Conference on Computer Vision.Singapore:Springer,2025. [11]LIU J,GUO Z Y,PING P,et al.Channel Interaction and Transformer Depth Estimation Network:Robust Self-Supervised Depth Estimation Under Varied Weather Conditions[J].Sustainability,2024,16(20):9131. [12]GODARD C,MAC AODHA O,BROSTOW G J.Unsupervised monocular depth estimation with left-right consistency[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:270-279. [13]XIE J,GIRSHICK R,FARHADI A.Deep3d:Fully automatic2d-to-3d video conversion with deep convolutional neural networks[C]//European Conference on Computer Vision.Springer International Publishing.2016:842-857. [14]GARG R,BG V K,CARNEIRO G,et al.Unsupervised cnn for single view depth estimation:Geometry to the rescue[C]//European Conference on Computer Vision.Springer International Publishing.2016:740-756. [15]BADKI A,TROCCOLI A,KIM K,et al.Bi3D:Stereo depth estimation via binary classifications[C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,IEEE Press:2020:1597-1605. [16]DU Q,LIU R,PAN Y,et al.Depth estimation with multi-resolution stereo matching[C]//IEEE Visual Communications and Image Processing.IEEE Press,2019:1-4. [17]JOHNSTON A,CARNEIRO G.Self-supervised monoculartrained depth estimation using self-attention and discrete dispa-rity volume[C]//IEEE Conference on Computer Vision and Pattern Recognition.IEEE Press,2020:4755-4764. [18]ZHOU T,BROWN M,SNAVELY N,et al.Unsupervised learning of depth and ego-motion from video[C]//IEEE Conference on Computer Vision and Pattern Recognition.2017:1851-1858. [19]VIJAYANARASIMHAN S,RICCO S,SCHMID C,et al.Sfm-net:Learning of structure and motion from video[J/OL].CoRR,2017,abs/1704.07804. [20]YIN Z,SHI J.Geonet:Unsupervised learning ofdense depth,optical flow and camera pose[C]//IEEE Conference on Computer Vision and Pattern Recognition.2018:1983-1992. [21]JANAI J,GUNEY F,RANJAN A,et al.Unsupervised learning of multi-frame optical flow with occlusions[C]//European Conference on Computer Vision.2018:690-706. [22]WAN Y,ZHAO Q,GUO C H,et al.Multi-sensor fusion self-supervised deep odometry and depth estimation[J].Remote Sen-sing,2022,14(5):1228. [23]MAHJOURIAN R,WICKE M,ANGELOVA A.Unsupervised learning of depth and ego-motion from monocular video using3D geometric constraints[C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE,2018:5667-5675. [24]ZHANG X,LI C,WANG Y,et al.Light feld depth estimation for scene with occlusion[J].Control and Decision,2018,33(12):2122-2130. [25]MNIH V,HEESS N,GRAVES A.Recurrent models of visual attention[J].arXiv:1406.6247,2014. [26]BAHDANAU D,CHO K,BENGIO Y.Neural machine translation by jointly learning to align and translate[C]//International Conference on Learning Representations.2015. [27]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isall you need[C]//Proceedings of the 31st InternationalConfe-rence on Neural Information Processing Systems.2017:6000-6010. [28]DOSOVITSKIY A,BEYER L,KOLESNIKOV A,et al.An image is worth 16x16 words:transformers for image recognition at scale[C]//International Conference on Learning Representations.OpenReview.net,2021. [29]ZHOU H,GREENWOOD D,TAYLOR S.Self-Supervised Monocular Depth Estimationwith Internal Feature Fusion[C]//British Machine Vision Conference 2021.BMVA Press,2021:378. [30]VARMA A,CHAWLA H,ZONOOZ B,et al.Transformers in Self-Supervised Monocular Depth Estimation with Unknown Camera Intrinsics[C]//Proceedings of the 17th International Joint Conference on Computer Vision.2022:758-769. [31]HAO C,ZHANG Y,POGGI M,et al.MonoViT:Self-Supervised Monocular Depth Estimation with a Vision Transformer[C]//International Conference on 3D Vision.Czech Republic,2022:668-678. [32]LEE Y,KIM J,WILLETTE J,et al.Mpvit:Multi-path visiontransformer for dense prediction[C]//IEEE Conference on Computer Vision and Pattern Recognition.2022:7287-7296. [33]WANG Z,BOVIK A C,SHEIKH H R,et al.Image quality assessment:from error visibility to structural similarity[J].IEEE Trans.,2004,13(4):600-612. [34]GODARD C,MAC A O,FIRMAN M,et al.Digging into self-supervised monocular depth estimation[C]//IEEE International Conference on Computer Vision.2019:3828-3838. [35]EIGEN D,PUHRSCH C,FERGUS R.Depth map predictionfrom a single image using a multi-scale deep network[C]//NIPS’14,2014. [36]WONG A,HONG B W,SOATTO S.Bilateral Cyclic Constraint and Adaptive Regularization for Unsupervised Monocular Depth Prediction[J].IEEE Conference on Computer Vision and Pattern Recognition.2019:5644-5653. [37]ZOU Y,LUO Z,HUANG J B.Df-net:Unsupervised joint lear-ning of depth and flow using cross-task consistency[C]//Proceedings of the European Conference on Computer Vision.2018:36-53. [38]RANJAN A,JAMPANI V,BALLES L,et al.Competitive col-laboration:Joint unsupervised learning of depth,camera motion,optical flow and motion segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition.2019:12240-12249. [39]CASSER V,PIRK S,MAHJOURIAN R,et al.Depth prediction without the sensors:Leveraging structure for unsupervised learning from monocular videos[C]//Proceedings of The AAAI Conference on Artificial Intelligence.2019:8001-8008. [40]ZHOU Z,FAN X,SHI P,et al.R-msfm:Recurrent multi-scale feature modulation formonocular depth estimating[C]//IEEE International Conference on Computer Vision.2021:12777-12786. [41]SURI Z K.Pose Constraints for Consistent Self-supervised Monocular Depth and Ego-Motion [C]//Scandinavian Conference on Image Analysis.Springer,2023:340-353. [42]BAE J,MOON S,IM S.Deep digging into the generalization of self-supervised monocular depthestimation[C]//36th AAAI Conference on Artificial Intelligence.2023:187-196. [43]WANG W,HAN J,ZOU X,et al.Research on Fast Monocular Depth Estimation Algorithm Based on Edge Devices[J].Computer Measurement & Control,2025,33(4):262-269. |
| [1] | LUO Chi, LU Lingyun, LIU Fei. Partial Differential Equation Solving Method Based on Locally Enhanced Fourier NeuralOperators [J]. Computer Science, 2025, 52(9): 144-151. |
| [2] | GUO Husheng, ZHANG Xufei, SUN Yujie, WANG Wenjian. Continuously Evolution Streaming Graph Neural Network [J]. Computer Science, 2025, 52(8): 118-126. |
| [3] | LIU Chengzhuang, ZHAI Sulan, LIU Haiqing, WANG Kunpeng. Weakly-aligned RGBT Salient Object Detection Based on Multi-modal Feature Alignment [J]. Computer Science, 2025, 52(7): 142-150. |
| [4] | XU Yongwei, REN Haopan, WANG Pengfei. Object Detection Algorithm Based on YOLOv8 Enhancement and Its Application Norms [J]. Computer Science, 2025, 52(7): 189-200. |
| [5] | FANG Chunying, HE Yuankun, WU Anxin. Emotion Recognition Based on Brain Network Connectivity and EEG Microstates [J]. Computer Science, 2025, 52(7): 201-209. |
| [6] | LUO Xuyang, TAN Zhiyi. Knowledge-aware Graph Refinement Network for Recommendation [J]. Computer Science, 2025, 52(7): 103-109. |
| [7] | SHI Xincheng, WANG Baohui, YU Litao, DU Hui. Study on Segmentation Algorithm of Lower Limb Bone Anatomical Structure Based on 3D CTImages [J]. Computer Science, 2025, 52(6A): 240500119-9. |
| [8] | ZHANG Yongyu, GUO Chenjuan, WEI Hanyue. Deep Learning Stock Price Probability Prediction Based on Multi-modal Feature Wavelet Decomposition [J]. Computer Science, 2025, 52(6A): 240600140-11. |
| [9] | LI Weirong, YIN Jibin. FB-TimesNet:An Improved Multimodal Emotion Recognition Method Based on TimesNet [J]. Computer Science, 2025, 52(6A): 240900046-8. |
| [10] | HAO Xu, WU Wenhong, NIU Hengmao, SHI Bao, WU Nier, WANG Jiamin, CHU Hongkun. Survey of Man-Machine Distance Detection Method in Construction Site [J]. Computer Science, 2025, 52(6A): 240700098-10. |
| [11] | XU Yutao, TANG Shouguo. Visual Question Answering Integrating Visual Common Sense Features and Gated Counting Module [J]. Computer Science, 2025, 52(6A): 240800086-7. |
| [12] | ZHANG Hang, WEI Shoulin, YIN Jibin. TalentDepth:A Monocular Depth Estimation Model for Complex Weather Scenarios Based onMultiscale Attention Mechanism [J]. Computer Science, 2025, 52(6A): 240900126-7. |
| [13] | WANG Rui, TANG Zhanjun. Multi-feature Fusion and Ensemble Learning-based Wind Turbine Blade Defect Detection Method [J]. Computer Science, 2025, 52(6A): 240900138-8. |
| [14] | LI Mingjie, HU Yi, YI Zhengming. Flame Image Enhancement with Few Samples Based on Style Weight Modulation Technique [J]. Computer Science, 2025, 52(6A): 240500129-7. |
| [15] | WANG Rong , ZOU Shuping, HAO Pengfei, GUO Jiawei, SHU Peng. Sand Dust Image Enhancement Method Based on Multi-cascaded Attention Interaction [J]. Computer Science, 2025, 52(6A): 240800048-7. |
|
||