Computer Science ›› 2026, Vol. 53 ›› Issue (1): 58-76.doi: 10.11896/jsjkx.250300081
• Database & Big Data & Data Science • Previous Articles Next Articles
HUANG Miaomiao1, WANG Huiying2, WANG Meixia1, WANG Yejiang1 , ZHAO Yuhai1
CLC Number:
| [1]SHARMA K,LEE Y C,NAMBI S,et al.A survey of graph neu-ral networks for social recommender systems[J].ACM Computing Surveys,2024,56(10):1-34. [2]CUI G Q,ZHOU J,YANG C,et al.Adaptive graph encoder for attributed graph embedding[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.New York:ACM,2020:976-985. [3]ZHOU B X,ZHENG L R,WU B H,et al.Protein engineering with lightweight graph denoising neural networks[J].Journal of Chemical Information and Modeling,2024,64(9):3650-3661. [4]FU N,NI W W,HOU L H,et al.Community detection in de-centralized social networks with local differential privacy[J].Information Sciences,2024,661:120164. [5]ZHANG Q J,XU Y D.Knowledge graph embedding with inverse function representation for link prediction[J].Engineering Applications of Artificial Intelligence,2024,127:107225. [6]LI S,ZAIDI N A,DU M J,et al.Property graph representation learning for node classification[J].Knowledge and Information Systems,2024,66(1):237-265. [7]CAO S S,LU W,XU Q K.GraRep:Learning graph representations with global structural information[C]//Proceedings of the 24th ACM International on Conference on Information and Knowledge Management.New York:ACM,2015:891-900. [8]OU M D,CUI P,PEI J,et al.Asymmetric transitivity preserving graph embedding[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery & Data Mi-ning.New York:ACM,2016:1105-1114. [9]PEROZZI B,AL-RFOU R,SKIENA S.DeepWalk:Online lear-ning of social representations[C]//Proceedings the 20th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.New York:ACM,2014:701-710. [10]GROVER A,LESKOVEC J.node2vec:Scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery & Data Mi-ning.New York:ACM,2016:855-864. [11]DONG Y,CHAWLA N V,SWAMI A.metapath2vec:Scalable representation learning for heterogeneous networks[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.New York:ACM,2017:135-144. [12]MIKOLOV T.Efficient estimation of word representations invector space[J].arXiv:1301.3781,2013. [13]CAO S S,LU W,XU Q K.Deep neural networks for learning graph representations[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence.Palo Alto,CA:AAAI,2016:1145-1152. [14]BRUNA J,ZAREMBA W,SZLAM A,et al.Spectral networks and locally connected networks on graphs[J].arXiv:1312.6203,2013. [15]YU W C,ZHENG C,CHENG W,et al.Learning deep network representations with adversarially regularized autoencoders[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.New York:ACM,2018:2663-2671. [16]GOYAL P,KAMRA N,HE X,et al.DynGEM:Deep embedding method for dynamic graphs[J].arXiv:1805.11273,2018. [17]ZHANG C X,SONG D J,HUANG C,et al.Heterogeneousgraph neural network[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.New York:ACM,2019:793-803. [18]PARK C,KIM D,HAN J,et al.Unsupervised attributed multiplex network embedding[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence.Palo Alto,CA:AAAI,2020:5371-5378. [19]FENG Y F,YOU H X,ZHANG Z Z,et al.Hypergraph neural networks[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence.Palo Alto,CA:AAAI,2019:3558-3565. [20]XU M J.Understanding graph embedding methods and their applications[J].SIAM Review,2021,63(4):825-853. [21]GOYAL P,FERRARA E.Graph embedding techniques,applications,and performance:A survey[J].Knowledge-Based Systems,2018,151:78-94. [22]YUE X,WANG Z,HUANG J G,et al.Graph embedding onbiomedical networks:Methods,applications and evaluations[J].Bioinformatics,2020,36(4):1241-1251. [23]WU Y Z,CHEN Y K,YIN Z S,et al.A survey on graph embedding techniques for biomedical data:Methods and applications[J].Information Fusion,2023,100:101909. [24]ANTELMI A,CORDASCO G,POLATO M,et al.A survey on hypergraph representation learning[J].ACM Computing Surveys,2023,56(1):1-38. [25]WANG X,BO D Y,SHI C,et al.A survey on heterogeneousgraph embedding:Methods,techniques,applications and sources[J].IEEE Transactions on Big Data,2022,9(2):415-436. [26]BELKIN M,NIYOGI P.Laplacian eigenmaps and spectral techniques for embedding and clustering[J].Advances in Neural Information Processing Systems,2001,14:585-591. [27]MENG H,ZHANG H,DING Y,et al.Component preserving laplacian eigenmaps for data reconstruction and dimensionality reduction[J].Applied Intelligence,2023,53(23):28570-28591. [28]CAI M,SHEN X,ABHADIOMHEN S E,et al.Robust dimensionality reduction via low-rank Laplacian graph learning[J].ACM Transactions on Intelligent Systems and Technology,2023,14(3):1-24. [29]AHMED A,SHERVASHIDZE N,NARAYANAMURTHY S,et al.Distributed large-scale natural graph factorization[C]//Proceedings of the 22nd International Conference on World Wide Web.New York:ACM,2013:37-48. [30]QIU J Z,DONG Y X,MA H,et al.NetSMF:Large-scale network embedding as sparse matrix factorization[C]//Proceedings of the World Wide Web Conference.New York:ACM,2019:1509-1520. [31]AGIBETOV A.Neural graph embeddings as explicit low-rankmatrix factorization for link prediction[J].Pattern Recognition,2023,133:108977. [32]WAN L,FU Z,LING Y,et al.Z-Laplacianmatrix factorization:Network embedding with interpretable graph signals[J].IEEE Transactions on Knowledge and Data Engineering,2023,36(8):4331-4345. [33]GOLDBERG Y.Word2vec Explained:Deriving Mikolov et al.’s negative-sampling word-embedding method[J].arXiv:1402.3722,2014. [34]RIBEIRO L F R,SAVERESE P H P,FIGUEIREDO D R.Struc2vec:Learning node representations from structural identity[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.New York:ACM,2017:385-394. [35]RAHMAN T,SURMA B,BACKES M,et al.Fairwalk:To-wards fair graph embedding[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence.San Francisco,CA:Morgan Kaufmann,2019:3289-3295. [36]ZHANG Y,SHEN J,ZHANG R,et al.Network representation learning via improved random walk with restart[J].Knowledge-Based Systems,2023,263:110255. [37]WANG R,LI Y K,LIN S,et al.Common neighbors matter:Fastrandom walk sampling with common neighbor awareness[J].IEEE Transactions on Knowledge and Data Engineering,2022,35(5):4570-4584. [38]GAWLIKOWSKI J,TASSI C R N,ALI M,et al.A survey of uncertainty in deep neural networks[J].Artificial Intelligence Review,2023,56:1513-1589. [39]CONG S,ZHOU Y.A review of convolutional neural network architectures and their optimizations[J].Artificial Intelligence Review,2023,56(3):1905-1969. [40]REN H T,LU W,XIAO Y,et al.Graph convolutional networks in language and vision:A survey[J].Knowledge-Based Systems,2022,251:109250. [41]DEFFERRARD M,BRESSON X,VANDERGHEYNST P.Convolutional neural networks on graphs with fast localized spectral filtering[J].Advances in Neural Information Processing Systems,2016,29:3837-3845. [42]KIPF T N,WELLING M.Semi-supervised classification withgraph convolutional networks[J].arXiv:1609.02907,2016. [43]WU F,AMAURI H,SOUZA J,et al.Simplifying graph convolutional networks[C]//Proceedings of the 36th International Conference on Machine Learning.New York:PMLR,2019:6861-6871. [44]JIANG X D,ZHU R H,LI P S,et al.Co-embedding of nodes and edges with graph neural networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,45(6):7075-7086. [45]WANG W,ZHANG G W,HAN H Y,et al.Correntropy-induced Wasserstein GCN:Learning graph embedding via domain adaptation[J].IEEE Transactions on Image Processing,2023:32:3980-3993. [46]NIEPERT M,AHMED M,KUTZKOV K.Learning convolu-tional neural networks for graphs[C]//Proceedings of the 33rd International Conference on Machine Learning.New York:PMLR,2016:2014-2023. [47]HAMILTON W,YING Z,LESKOVEC J.Inductive representation learning on large graphs[C]//Advances in Neural Information Processing Systems.2017:1024-1034. [48]HU F Y,ZHU Y Q,WU S,et al.GraphAIR:Graph representation learning with neighborhood aggregation and interaction[J].Pattern Recognition,2021,112:107745. [49]TAILOR S A,OPOLKA F L,LIO P,et al.Do we need anisotropic graph neural networks?[J].arXiv:2104.01481,2021. [50]ZHOU Y,HUO H,HOU Z,et al.Co-embedding of edges andnodes with deep graph convolutional neural networks[J].Scientific Reports,2023,13(1):16966. [51]VELIČKOVIĆ P,CUCURULL G,CASANOVA A,et al.Graph attention networks [J].arXiv:1710.10903,2017. [52]HE J Y,WANG J M,YU Z Z.Attention based adversariallyregularized learning for network embedding[J].Data Mining and Knowledge Discovery,2021,35(5):2112-2140. [53]YE Y,JI S H.Sparse graph attention networks[J].IEEE Transactions on Knowledge and Data Engineering,2021,35(1):905-916. [54]HE L C,BAI L,YANG X,et al.High-order graph attention network[J].Information Sciences,2023,630:222-234. [55]XIE Y,ZHANG Y Q,GONG M G,et al.MGAT:Multi-viewgraph attention networks[J].Neural Networks,2020,132:180-189. [56]HUANG Z M,REN Y Z,PU X,et al.Self-supervised graph attention networks for deep weighted multi-view clustering[C]//Proceedings of the 37th AAAI Conference on Artificial Intelligence.Palo Alto,CA:AAAI,2023:7936-7943. [57]WANG X,ZHU M Q,BO D Y,et al.AM-GCN:Adaptive multi-channel graph convolutional networks[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.New York:ACM,2020:1243-1253. [58]RUMELHART D E,HINTON G E,WILLIAMS R J.Learning representations by back-propagating errors[J].Nature,1986,323(6088):533-536. [59]WANG D X,CUI P,ZHU W W.Structural deep network embedding[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.New York:ACM,2016:1225-1234. [60]LI J,LU G Q,WU Z T,et al.Multi-view representation model based on graph autoencoder[J].Information Sciences,2023,632:439-453. [61]SUN D D,LI D S,DING Z L,et al.Dual-decoder graph autoen-coder for unsupervised graph representation learning[J].Knowledge-Based Systems,2021,234:107564. [62]CHEN Z L,WU Z H,WANG S P,et al.Dual low-rank graphautoencoder for semantic and topological networks[C]//Proceedings of the 37th AAAI Conference on Artificial Intelligence.Palo Alto,CA:AAAI,2023:4191-4198. [63]KIPF T N,WELLING M.Variational graph auto-encoders[J].arXiv:1611.07308,2016. [64]GUO L,DAI Q.Graph clustering via variational graph embedding[J].Pattern Recognition,2022,122:108334. [65]ZHANG R,ZHANG Y X,LU C J,et al.Unsupervised graph embedding via adaptive graph learning[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,45(4):5329-5336. [66]GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Ge-nerative adversarial nets[C]//Advances in Neural Information Processing Systems.2014:2672-2680. [67]WANG H W,WANG J,WANG J L,et al.GraphGAN:Graph representation learning with generative adversarial nets[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence.Palo Alto,CA:AAAI,2018:2508-2515. [68]HONG H T,LI X,WANG M Z.GANE:A generative adversarial network embedding[J].IEEE Transactions on Neural Networks and Learning Systems,2019,31(7):2325-2335. [69]HE D X,WANG T,ZHAI L,et al.Adversarial representation mechanism learning for network embedding[J].IEEE Transactions on Knowledge and Data Engineering,2021,35(2):1200-1213. [70]PAREJA A,DOMENICONI G,CHEN J,et al.EvolveGCN:Evolving graph convolutional networks for dynamic graphs[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence.Palo Alto,CA:AAAI,2020:5363-5370. [71]GAO C,ZHU J Y,ZHANG F,et al.A novel representationlearning for dynamic graphs based on graph convolutional networks[J].IEEE Transactions on Cybernetics,2022,53(6):3599-3612. [72]ZHANG C Y,YAO Z L,YAO H Y,et al.Dynamic representation learning via recurrent graph neural networks[J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2022,53(2):1284-1297. [73]ZHU Y F,CONG F P,ZHANG D,et al.WinGNN:Dynamic graph neural networks with random gradient aggregation window[C]//Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery & Data Mining.New York:ACM,2023:3650-3662. [74]TRIVEDI R,FARAJTABAR M,BISWAL P,et al.DyRep:Learning representations over dynamic graphs[C]//Procee-dings of the International Conference on Learning Representations.2024. [75]ROSSI E,CHAMBERLAIN B,FRASCA F,et al.Temporalgraph networks for deep learning on dynamic graphs[J].arXiv:2006.10637,2020. [76]SOUZA A,MESQUITA D,KASKI S,et al.Provably expressive temporal graph networks[J].Advances in Neural Information Processing Systems,2022,35:32257-32269. [77]FU T Y,LEE W C,LEI Z.HIN2Vec:Explore meta-paths inheterogeneous information networks for representation learning[C]//Proceedings of the 2017 ACM on Conference on Information and Knowledge Management.New York:ACM,2017:1797-1806. [78]LEE S,PARK C,YU H.BHIN2vec:Balancing the type of relation in heterogeneous information network[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management.New York:ACM,2019:619-628. [79]LIU Z,ZHANG S,ZHANG J,et al.HeteEdgeWalk:A heterogeneous edge memory random walk for heterogeneous information network embedding[J].Entropy,2023,25(7):998. [80]WANG X,JI H Y,SHI C,et al.Heterogeneous graph attention network[C]//Proceedings of the 19th World Wide Web Confe-rence.New York:ACM,2019:2022-2032. [81]FU X Y,ZHANG J N,MENG Z Q,et al.MAGNN:Metapath aggregated graph neural network for heterogeneous graph embedding[C]//Proceedings of the Web Conference 2020.New York:ACM,2020:2331-2341. [82]HE Y F,YAN D C,ZHANG Y W,et al.Semantic tradeoff for heterogeneous graph embedding[J].IEEE Transactions on Computational Social Systems,2022,10(3):1263-1276. [83]YANG X C,YAN M Y,PAN S R,et al.Simple and efficientheterogeneous graph neural network[C]//Proceedings of the 37th AAAI Conference on Artificial Intelligence.Palo Alto,CA:AAAI,2023:10816-10824. [84]LIU W Y,CHEN P Y,YEUNG S L,et al.Principled multilayer network embedding[C]//2017 IEEE International Conference on Data Mining Workshops(ICDMW).IEEE,2017:134-141. [85]JING B Y,PARK C Y,TONG H H.HDMI:High-order deepmultiplex infomax[C]//Proceedings of the Web Conference 2021.New York:ACM,2021:2414-2424. [86]MO Y J,CHEN Y H,LEI Y J,et al.Multiplex graph representation learning via dual correlation reduction[J].IEEE Transactions on Knowledge and Data Engineering,2023,35(12):12814-12827. [87]MO Y J,LEI Y J,SHEN J L,et al.Disentangled multiplexgraph representation learning[C]//Proceedings of the 40th International Conference on Machine Learning.New York:PMLR,2023:24983-25005. [88]JI S Y,FENG Y F,JI R R,et al.Dual channel hypergraph collaborative filtering[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mi-ning.New York:ACM,2020:2020-2029. [89]YANG C Q,WANG R J,YAO S C,et al.Semi-supervised hypergraph node classification on hypergraph line expansion[C]//Proceedings of the 31st ACM International Conference on Information & Knowledge Management.New York:ACM,2022:2352-2361. [90]ARYA D,GUPTA D K,RUDINAC S,et al.HyperSAGE:Ge-neralizing inductive representation learning on hypergraphs[J].arXiv:2010.04558,2020. [91]ZHANG R C,ZOU Y S,MA J.Hyper-SAGNN:A self-attention based graph neural network for hypergraphs[J].arXiv:1911.02613,2019. [92]BAI S,ZHANG F H,TORR P H S.Hypergraph convolutionand hypergraph attention[J].Pattern Recognition,2021,110:107637. [93]WU L C,WANG D L,SONG K S,et al.Dual-view hypergraph neural networks for attributed graph learning[J].Knowledge-Based Systems,2021,227:107185. [94]CHE X J,SUN Y P.Graph node classification algorithm based on similarity random walk aggregation[J].Journal of Jilin University(Engineering and Technology Edition),2025,55(6):2069-2075. [95]WANG C P,WANG C K,WANG Z,et al.Edge2vec:Edge-based social network embedding[J].ACM Transactions on Knowledge Discovery from Data,2020,14(4):1-24. [96]ZHANG Y F,GAO S Q,PEI J,et al.Improving social network embedding via new second-order continuous graph neural networks[C]//Proceedings of the 28th ACM SIGKDDInternatio-nal Conference on Knowledge Discovery & Data Mining.New York:ACM,2022:2515-2523. [97]KUMAR S,MALLIK A,KHETARPAL A,et al.Influencemaximization in social networks using graph embedding and graph neural network[J].Information Sciences,2022,607:1617-1636. [98]LI J K,WANG R J,ZHANG F L,et al.Attribute Heterogeneous Network Embedding Method Combining Attention Mechanisms[J].Journal of Chinese Computer Systems,2024,45(6):1466-1473. [99]SANG L,WANG Y,ZHANG Y,et al.Intent-guided Heterogeneous Graph Contrastive Learning for Recommendation[J].IEEE Transactions on Knowledge and Data Engineering,2025,37(4):1915-1929. [100]YU J L,YIN H Z,LI J D,et al.Self-supervised multi-channel hypergraph convolutional network for social recommendation[C]//Proceedings of the Web Conference 2021.2021:413-424. [101]ZHANG Y,TIAN J,SUN J,et al.HKGAT:Heterogeneousknowledge graph attention network for explainable recommendation system[J].Applied Intelligence,2025,55(6):549. [102]LI N,YANG Z,WANG J,et al.Drug-target interaction prediction using knowledge graph embedding[J].Iscience,2024,27(6):109393. [103]BARANWAL M,MAGNER A,SALDINGER J,et al.StructGraph:A graph attention network for structure based predictions of protein-protein interactions[J].BMC Bioinformatics,2022,23(1):370. [104]SU X R,HU L,YOU Z H,et al.Multi-view heterogeneous molecular network representation learning for protein-protein interaction prediction[J].BMC Bioinformatics,2022,23(1):234. [105]GARCIA V,BRUNA J.Few-shot learning with graph neural networks[J].arXiv:1711.04043,2017. [106]XIE J,MENG Y,ZHAO Y,et al.Dynamicsemantic-based spatial-temporal graph convolution network for skeleton-based human action recognition[J].IEEE Transactions on Image Processing,2024,33:6691-6704. [107]AHMAD T,RIZVI S T H,KANWAL N.Transforming spatio-temporal self-attention using action embedding for skeleton-based action recognition[J].Journal of Visual Communication and Image Representation,2023,95:103892. [108]YAO L,MAO C S,LUO Y.Graph convolutional networks for text classification[C]//Proceedings of the 33th AAAI Confe-rence on Artificial Intelligence.Palo Alto,CA:AAAI,2019:7370-7377. [109]RAGESH R,SELLAMANICKAM S,IYER A,et al.HeteGCN:Heterogeneous graph convolutional networks for text classification[C]//Proceedings of the 14th ACM InternationalConfe-rence on Web Search and Data Mining.New York:ACM,2021:860-868. [110]YANG T C,HU L M,SHI C,et al.HGAT:Heterogeneous graph attention networks for semi-supervised short text classification[J].ACM Transactions on Information Systems,2021,39(3):1-29. [111]MA Y L,LIU X F,ZHAO L J,et al.Hybrid embedding-based text representation for hierarchical multi-label text classification[J].Expert Systems with Applications,2022,187:115905. [112]SCHLICHTKRULL M,KIPF T N,BLOEM P,et al.Modeling relational data with graph convolutional networks[C]//The Semantic Web:15th International Conference.2018:593-607. [113]BI Z,CHENG S,CHEN J,et al.Relphormer:Relational graph Transformer for knowledge graph representations[J].Neurocomputing,2024,566:127044. [114]LIANG S,ZHU A,ZHANG J,et al.Hyper-node relationalgraph attention network for multi-modal knowledge graph completion[J].ACM Transactions on Multimedia Computing,Communications and Applications,2023,19(2):1-21. [115]CHIANG W L,LIU X Q,SI S,et al.Cluster-GCN:An efficient algorithm for training deep and large graph convolutional networks[C]//Proceedings of the 25th ACM SIGKDD Internatio-nal Conference on Knowledge Discovery & Data Mining.New York:ACM,2019:257-266. [116]LIANG J,GURUKAR S,PARTHASARATHY S.Mile:Amulti-level framework for scalable graph embedding[C]//Proceedings of the International AAAI Conference on Web and Social Media.Palo Alto,CA:AAAI,2021:361-372. [117]JI Y G,YIN M Y,YANG H X,et al.Accelerating large-scale heterogeneous interaction graph embedding learning via importance sampling[J].ACM Transactions on Knowledge Discovery from Data,2020,15(1):1-23. [118]FENG A S,YOU C Y,WANG S Q,et al.KerGNNs:Interpretable graph neural networks with graph kernels[C]//Proceedings of the 36th AAAI Conference on Artificial Intelligence.Palo Alto,CA:AAAI,2022:6614-6622. [119]YANG Y M,GUAN Z Y,LI J X,et al.Interpretable and efficient heterogeneous graph convolutional network[J].IEEE Transactions on Knowledge and Data Engineering,2021,35(2):1637-1650. [120]HUANG Q,YAMADA M,TIAN Y,et al.GraphLIME:Local interpretable model explanations for graph neural networks[J].IEEE Transactions on Knowledge and Data Engineering,2022,35(7):6968-6972. [121]KIOUCHE A,LAGRAA S,AMROUCHE K,et al.A simplegraph embedding for anomaly detection in a stream of heterogeneous labeled graphs[J].Pattern Recognition,2021,112:107746. [122]DUAN D,ZHANG C,TONG L,et al.An anomaly aware network embedding framework for unsupervised anomalous link detection[J].Data Mining and Knowledge Discovery,2024,38(2):501-534. [123]HAN S,WOO S.Learning sparse latent graph representationsfor anomaly detection in multivariate time series[C]//Procee-dings of the 28th ACM SIGKDD Conference on Knowledge Discovery & Data Mining.New York:ACM,2022:2977-2986. [124]XIE H,ZHENG D,MA J,et al.Graph-aware language modelpre-training on a large graph corpus can help multiple graph applications[C]//Proceedings of the 29th ACM SIGKDD Confe-rence on Knowledge Discovery & Data Mining.New York:ACM,2023:5270-5281. [125]LI P Y,WANG J,QIAO Y X,et al.An effective self-supervised framework for learning expressive molecular global representations to drug discovery[J].Briefings in Bioinformatics,2021,22(6):bbab109. [126]RONG Y,BIAN Y T,XU T Y,et al.Self-supervised graphTransformer on large-scale molecular data[J].Advances in Neural Information Processing Systems,2020,33:12559-12571. [127]SUN X G,YIN H Z,LIU B,et al.Heterogeneous hypergraph embedding for graph classification[C]//Proceedings of the 14th ACM International Conference on Web Search and Data Mi-ning.New York:ACM,2021:725-733. [128]LIU J,SONG L Y,WANG G T,et al.Meta-HGT:Metapath-aware hypergraph Transformer for heterogeneous information network embedding[J].Neural Networks,2023,157:65-76. [129]FU C,YU P,YU Y,et al.MHGCN+:Multiplex heterogeneous graph convolutional network[J].ACM Transactions on Intelligent Systems and Technology,2024,15(3):1-25. |
| [1] | WANG Cheng, JIN Cheng. KAN-based Unsupervised Multivariate Time Series Anomaly Detection Network [J]. Computer Science, 2026, 53(1): 89-96. |
| [2] | LIU Hongjian, ZOU Danping, LI Ping. Pedestrian Trajectory Prediction Method Based on Graph Attention Interaction [J]. Computer Science, 2026, 53(1): 97-103. |
| [3] | XUE Jingyan, XIA Jianan, HUO Ruili, LIU Jie, ZHOU Xuezhong. Review of Retinal Image Analysis Methods for OCT/OCTA Based on Deep Learning [J]. Computer Science, 2026, 53(1): 128-140. |
| [4] | ZHOU Bingquan, JIANG Jie, CHEN Jiangmin, ZHAN Lixin. EvR-DETR:Event-RGB Fusion for Lightweight End-to-End Object Detection [J]. Computer Science, 2026, 53(1): 153-162. |
| [5] | LYU Zhenghao, XIAN Hequn. Deep Learning Model Protection Method Based on Robust Partitioned Watermarking [J]. Computer Science, 2026, 53(1): 423-429. |
| [6] | LIU Wei, XU Yong, FANG Juan, LI Cheng, ZHU Yujun, FANG Qun, HE Xin. Multimodal Air-writing Gesture Recognition Based on Radar-Vision Fusion [J]. Computer Science, 2025, 52(9): 259-268. |
| [7] | ZHOU Tao, DU Yongping, XIE Runfeng, HAN Honggui. Vulnerability Detection Method Based on Deep Fusion of Multi-dimensional Features from Heterogeneous Contract Graphs [J]. Computer Science, 2025, 52(9): 368-375. |
| [8] | YIN Shi, SHI Zhenyang, WU Menglin, CAI Jinyan, YU De. Deep Learning-based Kidney Segmentation in Ultrasound Imaging:Current Trends and Challenges [J]. Computer Science, 2025, 52(9): 16-24. |
| [9] | ZENG Lili, XIA Jianan, LI Shaowen, JING Maike, ZHAO Huihui, ZHOU Xuezhong. M2T-Net:Cross-task Transfer Learning Tongue Diagnosis Method Based on Multi-source Data [J]. Computer Science, 2025, 52(9): 47-53. |
| [10] | LI Yaru, WANG Qianqian, CHE Chao, ZHU Deheng. Graph-based Compound-Protein Interaction Prediction with Drug Substructures and Protein 3D Information [J]. Computer Science, 2025, 52(9): 71-79. |
| [11] | WU Hanyu, LIU Tianci, JIAO Tuocheng, CHE Chao. DHMP:Dynamic Hypergraph-enhanced Medication-aware Model for Temporal Health EventPrediction [J]. Computer Science, 2025, 52(9): 88-95. |
| [12] | LUO Chi, LU Lingyun, LIU Fei. Partial Differential Equation Solving Method Based on Locally Enhanced Fourier NeuralOperators [J]. Computer Science, 2025, 52(9): 144-151. |
| [13] | LIU Leyuan, CHEN Gege, WU Wei, WANG Yong, ZHOU Fan. Survey of Data Classification and Grading Studies [J]. Computer Science, 2025, 52(9): 195-211. |
| [14] | SU Shiyu, YU Jiong, LI Shu, JIU Shicheng. Cross-domain Graph Anomaly Detection Via Dual Classification and Reconstruction [J]. Computer Science, 2025, 52(8): 374-384. |
| [15] | LIU Zhengyu, ZHANG Fan, QI Xiaofeng, GAO Yanzhao, SONG Yijing, FAN Wang. Review of Research on Deep Learning Compiler [J]. Computer Science, 2025, 52(8): 29-44. |
|
||