Computer Science ›› 2025, Vol. 52 ›› Issue (9): 88-95.doi: 10.11896/jsjkx.250300012
• Intelligent Medical Engineering • Previous Articles Next Articles
WU Hanyu1,2, LIU Tianci1,2, JIAO Tuocheng3, CHE Chao1,2
CLC Number:
[1]LU C,REDDY C K,NING Y.Self-supervised graph learningwith hyperbolic embedding for temporal health event prediction[J].IEEE Transactions on Cybernetics,2021,53(4):2124-2136. [2]YANG X M,ZHAN X C,CHENG H L,et al.Diagnosis Prediction Based on Graph Convolutional Network and Attention Mechanism[J].Computer Science,2023,50(S2):599-604. [3]WANG M X,XIONG Y.Disease Diagnosis Prediction Algorithm Based on Contrastive Learning[J].Computer Science,2023,50(7):46-52. [4]ZHANG X,PENG X,GUAN H,et al.Fusion of Dynamic Hypergraph and Clinical Event for Sequential Diagnosis Prediction[C]//2023 IEEE 29th International Conference on Parallel and Distributed Systems(ICPADS).2023:1620-1627. [5]LU C,HAN T,NING Y.Context-aware health event prediction via transition functions on dynamic disease graphs[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2022:4567-4574. [6]CHOI E,BAHADORI M T,SUN J,et al.Retain:An interpretable predictive model for healthcare using reverse time attention mechanism[C]//Advances in Neural Information Processing Systems.2016. [7]MA F,CHITTA R,ZHOU J,et al.Dipole:Diagnosis prediction in healthcare via attention-based bidirectional recurrent neural networks[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2017:1903-1911. [8]LU C,REDDY C K,CHAKRABORTY P,et al.Collaborativegraph learning with auxiliary text for temporal event prediction in healthcare[J].arXiv:2105.07542,2021. [9]NGUYEN P,TRAN T,WICKRAMASINGHE N,et al.Deepr:a convolutional net for medical records[J].IEEE Journal of Biomedical and Health Informatics,2016,21(1):22-30. [10]LI H,LI W H,CHEN W,et al.Diagnostic Prediction Based on Node2vec and Knowledge Attention Mechanism[J].Computer Science,2021,48(S2):630-637. [11]LU H,UDDIN S.Disease prediction using graph machine learning based on electronic health data:a review of approaches and trends[C]//Healthcare.2023. [12]ZHANG X,PENG X,CHEN W,et al.Multi-Channel Hypergraph Network for Sequential Diagnosis Prediction in Healthcare[C]//2024 27th International Conference on Computer Supported Cooperative Work in Design(CSCWD).2024:2937-2942. [13]WU J,DONG Y,GAO Z,et al.Dual attention and patient similarity network for drug recommendation[J].Bioinformatics,2023,39(1):btad003. [14]LI Y,FENG L,WANG X.Clinical Assisted Diagnosis Based on Heterogeneous Graph Medical Record Attention Network[J].Computer Engineering and Science,2023,45(9):1701-1710. [15]SHANG J,MA T,XIAO C,et al.Pre-training of graph augmented transformers for medication recommendation[J].arXiv:1906.00346,2019. [16]JIANG J,WEI Y,FENG Y,et al.Dynamic hypergraph neural networks[C]//IJCAI.2019:2635-2641. [17]XU R,ALI M K,HO J C,et al.Hypergraph transformers for ehr-based clinical predictions[J].AMIA Summits on Translational Science Proceedings,2023,2023:582-591. [18]KATZ D,BAPTISTA J,AZEN S,et al.Obtaining confidence intervals for the risk ratio in cohort studies[J].Biometrics,1978,34(3):469-474. [19]HIDALGO C A,BLUMM N,BARABÁSI A L,et al.A dynamic network approach for the study of human phenotypes[J].PLoS Computational Biology,2009,5(4):e1000353. [20]LU H,UDDIN S.A disease network-based recommender system framework for predictive risk modelling of chronic diseases and their comorbidities[J].Applied Intelligence,2022,52(9):10330-10340. [21]XU Z,ZHANG Q,YIP P S F.Predicting post-discharge self-harm incidents using disease comorbidity networks:A retrospective machine learning study[J].Journal of Affective Disorders,2020,277:402-409. [22]CHURCH K,HANKS P.Word association norms,mutual information,and lexicography[J].Computational linguistics,1990,16(1):22-29. [23]FENG Y,YOU H,ZHANG Z,et al.Hypergraph neural net-works[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2019:3558-3565. [24]KIM E S,KANG W Y,ON K W,et al.Hypergraph attention networks for multimodal learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:14581-14590. [25]JOHNSON A E,POLLARD T J,SHEN L,et al.MIMIC-III,a freely accessible critical care database[J].Scientific Data,2016,3(1):1-9. [26]JOHNSON A E,BULGARELLI L,SHEN L,et al.MIMIC-IV,a freely accessible electronic health record dataset[J].Scientific Data,2023,10(1):1. [27]BAI T,ZHANG S,EGLESTON B L,et al.Interpretable representation learning for healthcare via capturing disease progression through time[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mi-ning.2018:43-51. [28]YANG Z,LIN Y,XU Y,et al.Interpretable Disease Prediction via Path Reasoning over medical knowledge graphs and admission history[J].Knowledge-Based Systems,2023,281:111082. [29]LUO J,YE M,XIAO C,et al.Hitanet:Hierarchical time-aware attention networks for risk prediction on electronic health records[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2020:647-656. |
[1] | LI Yaru, WANG Qianqian, CHE Chao, ZHU Deheng. Graph-based Compound-Protein Interaction Prediction with Drug Substructures and Protein 3D Information [J]. Computer Science, 2025, 52(9): 71-79. |
[2] | TANG Boyuan, LI Qi. Review on Application of Spatial-Temporal Graph Neural Network in PM2.5 ConcentrationForecasting [J]. Computer Science, 2025, 52(8): 71-85. |
[3] | GUO Husheng, ZHANG Xufei, SUN Yujie, WANG Wenjian. Continuously Evolution Streaming Graph Neural Network [J]. Computer Science, 2025, 52(8): 118-126. |
[4] | SU Shiyu, YU Jiong, LI Shu, JIU Shicheng. Cross-domain Graph Anomaly Detection Via Dual Classification and Reconstruction [J]. Computer Science, 2025, 52(8): 374-384. |
[5] | LUO Xuyang, TAN Zhiyi. Knowledge-aware Graph Refinement Network for Recommendation [J]. Computer Science, 2025, 52(7): 103-109. |
[6] | HAO Jiahui, WAN Yuan, ZHANG Yuhang. Research on Node Learning of Graph Neural Networks Fusing Positional and StructuralInformation [J]. Computer Science, 2025, 52(7): 110-118. |
[7] | JIANG Kun, ZHAO Zhengpeng, PU Yuanyuan, HUANG Jian, GU Jinjing, XU Dan. Cross-modal Hypergraph Optimisation Learning for Multimodal Sentiment Analysis [J]. Computer Science, 2025, 52(7): 210-217. |
[8] | ZHENG Chuangrui, DENG Xiuqin, CHEN Lei. Traffic Prediction Model Based on Decoupled Adaptive Dynamic Graph Convolution [J]. Computer Science, 2025, 52(6A): 240400149-8. |
[9] | TENG Minjun, SUN Tengzhong, LI Yanchen, CHEN Yuan, SONG Mofei. Internet Application User Profiling Analysis Based on Selection State Space Graph Neural Network [J]. Computer Science, 2025, 52(6A): 240900060-8. |
[10] | SHI Enyi, CHANG Shuyu, CHEN Kejia, ZHANG Yang, HUANG Haiping. BiGCN-TL:Bipartite Graph Convolutional Neural Network Transformer Localization Model for Software Bug Partial Localization Scenarios [J]. Computer Science, 2025, 52(6A): 250200086-11. |
[11] | QIAO Yu, XU Tao, ZHANG Ya, WEN Fengpeng, LI Qiangwei. Graph Neural Network Defect Prediction Method Combined with Developer Dependencies [J]. Computer Science, 2025, 52(6): 52-57. |
[12] | WANG Jinghong, WU Zhibing, WANG Xizhao, LI Haokang. Semantic-aware Heterogeneous Graph Attention Network Based on Multi-view RepresentationLearning [J]. Computer Science, 2025, 52(6): 167-178. |
[13] | WU Pengyuan, FANG Wei. Study on Graph Collaborative Filtering Model Based on FeatureNet Contrastive Learning [J]. Computer Science, 2025, 52(5): 139-148. |
[14] | HUANG Qian, SU Xinkai, LI Chang, WU Yirui. Hypergraph Convolutional Network with Multi-perspective Topology Refinement forSkeleton-based Action Recognition [J]. Computer Science, 2025, 52(5): 220-226. |
[15] | YANG Yingxiu, CHEN Hongmei, ZHOU Lihua , XIAO Qing. Heterogeneous Graph Attention Network Based on Data Augmentation [J]. Computer Science, 2025, 52(3): 180-187. |
|