Computer Science ›› 2019, Vol. 46 ›› Issue (11A): 23-27.

• Intelligent Computing • Previous Articles     Next Articles

Spatio-temporal Trajectory Prediction of Power Grid Based on Double Layers Stacked Long Short-term Memory

YANG Jia-ning1, HUANG Xiang-sheng1, LI Zong-han2 , RONG Can1, LIU Dao-wei2   

  1. (Institute of Automation,Chinese Academy of Sciences,Beijing 100190,China)1;
    (China Electric Power Research Institute,Beijing 100190,China)2
  • Online:2019-11-10 Published:2019-11-20

Abstract: With the development of wide area measurement technology,it is important to identify transient stability in advance and take preventive control measures for safety and stability of power systems,and the spatio-temporal trajectory prediction of power systems is key.Although the traditional method of space-time trajectory prediction of power grid without system model does not depend on system model and its calculation speed is faster,the spatial topology of power grid cannot be considered in the process of prediction.In addition,in the big data environment of modern complex power grid,prediction accuracy with system model still needs to be improved compared with the method of using deep learning.Therefore,this paper proposed a space-time trajectory prediction model based on two-layer staclong short term memory and neighborhovd relationswhips.It adopts stacked long short term memory neural network,and introduces the characteristics of the first and second order nodes of the generator to be predicted into the model.The experimental results show that the root mean square error of the prediction decreases gradually for the prediction accuracy increases gradually with the support vector regression method,the recurrent neural network method,the single-layer long shortterm memory neural network method and space-time trajectory prediction methodbased on the double layers stacked long short term memory on the test set.When first-order node and second-order node are respectively introduced into space-time trajectory prediction of power grid,the prediction accuracy increases as the introduction of adjacent nodes increases.Compared with the traditional method of power grid spatio-temporal trajectory prediction,the model based on double layer stacked long short term memory and the topological relationship of neighboring nodes can better characterize the change of power grid space-time trajectory under transient scenarios,and achieve the prediction of power grid spatio-temporal trajectory more accurately.

Key words: Powersystem, Spatial topological information, Spatio-temporal trajectory prediction, Stacked long short term memory neural network, Transient stability

CLC Number: 

  • TP391
[1]朱方,赵红光,刘增煌,等.大区电网互联对电力系统动态稳定性的影响[J].中国电机工程学报,2007,27(1):1-7.
[2]张丽英,叶廷路,辛耀中,等.大规模风电接入电网的相关问题及措施[J].中国电机工程学报,2010,30(25):1-9.
[3]刘道伟,张东霞,孙华东,等.时空大数据环境下的大电网稳定态势量化评估与自适应防控体系构建[J].中国电机工程学报,2015,35(2):268-276.
[4]彭疆南,孙元章,王海风.基于广域量测数据和导纳参数在线辨识的受扰轨迹预测[J].电力系统自动化,2003,27(22):6-11.
[5]吴为,汤涌,孙华东,等.暂态稳定受扰轨迹预测的模型参数自适应研究[J].电网技术,2013,37(3):827-834.
[6]李琰,周孝信,周京阳.基于引入虚拟负荷的发电机暂态稳定预测[J].电工技术学报,2008,23(3):103-107.
[7]李国庆.电力系统暂态稳定预测控制的研究[J].电力系统自动化,1994,18(3):25-31.
[8]LI G Q.A new prediction and control method for improvingtransient stability of power systems[C]∥Proceedings of the International Conference on AMSE.Hefei:AMSE,1992:2783-2790.
[9]李国庆,孙福军,任强.基于外部观测的电力系统暂态稳定性实时预测和控制方法[J].电网技术,1995(1):17-22.
[10]孙建华.一种电力系统暂态稳定性快速实施预测方法[J].中国电机工程学报,1993,13(6):60-66.
[11]毛安家,郭志忠,张学松.一种基于广域测量系统过程量测数据的快速暂态稳定预估方法[J].中国电机工程学报,2006,26(17):38-43.
[12]宋方方,毕天姝,杨奇逊.基于WAMS的电力系统受扰轨迹预测[J].电力系统自动化,2006,30(23):27-32.
[13]邓晖,赵晋泉,吴小辰,等.基于改进灰色Verhulst模型的受扰轨迹实时预测方法[J].电力系统保护与控制,2012,40(9):18-23.
[14]刘玉田,林飞.基于相量测量技术和模糊径向基网络的暂态稳定性预测[J].中国电机工程学报,2000,20(2):19-23.
[15]吴琼,杨以涵,刘文颖.基于最小二乘支持向量机的电力系统暂态稳定在线预测[J].中国电机工程学报,2007,27(25):38-43.
[16]杨海民,潘志松,白玮.时间序列预测方法综述[J].计算机科学,2019,46(1):21-28.
[17]RUMELHART D E,HINTON G E,WILLIAMS R J.Learning representations by back-propagating errors[J].Nature,1986,323(6088):533.
[18]HOCHREITER S, SCHMIDHUBER J.Long short-term me-mory[J].Neural Computation,1997,9(8):1735-1780.
[19]GRAVES A.Supervised Sequence Labelling with RecurrentNeural Networks[M].Berlin:Springer,2008.
[20]HERMANS M,SCHRAUWEN B.Training and analyzing deep recurrent neural networks[C]∥International Conference on Neural Information Processing Systems.Curran Associates Inc.,2013:1-9.
[21]PASCANU R,GULCEHRE C,CHO K,et al.How to Construct Deep Recurrent Neural Networks[J/OL].http://arXiv.org/abs/1312.6026.
[22]GRAVES A,MOHAMED A R,HINTON G.Speech Recognition with Deep Recurrent Neural Networks[J/OL].http://adsabs.harvard.edu/abs/2013arXiv1303.5778G.
[1] CHEN Zhi-qiang, HAN Meng, LI Mu-hang, WU Hong-xin, ZHANG Xi-long. Survey of Concept Drift Handling Methods in Data Streams [J]. Computer Science, 2022, 49(9): 14-32.
[2] WANG Ming, WU Wen-fang, WANG Da-ling, FENG Shi, ZHANG Yi-fei. Generative Link Tree:A Counterfactual Explanation Generation Approach with High Data Fidelity [J]. Computer Science, 2022, 49(9): 33-40.
[3] ZHANG Jia, DONG Shou-bin. Cross-domain Recommendation Based on Review Aspect-level User Preference Transfer [J]. Computer Science, 2022, 49(9): 41-47.
[4] ZHOU Fang-quan, CHENG Wei-qing. Sequence Recommendation Based on Global Enhanced Graph Neural Network [J]. Computer Science, 2022, 49(9): 55-63.
[5] SONG Jie, LIANG Mei-yu, XUE Zhe, DU Jun-ping, KOU Fei-fei. Scientific Paper Heterogeneous Graph Node Representation Learning Method Based onUnsupervised Clustering Level [J]. Computer Science, 2022, 49(9): 64-69.
[6] CHAI Hui-min, ZHANG Yong, FANG Min. Aerial Target Grouping Method Based on Feature Similarity Clustering [J]. Computer Science, 2022, 49(9): 70-75.
[7] ZHENG Wen-ping, LIU Mei-lin, YANG Gui. Community Detection Algorithm Based on Node Stability and Neighbor Similarity [J]. Computer Science, 2022, 49(9): 83-91.
[8] LYU Xiao-feng, ZHAO Shu-liang, GAO Heng-da, WU Yong-liang, ZHANG Bao-qi. Short Texts Feautre Enrichment Method Based on Heterogeneous Information Network [J]. Computer Science, 2022, 49(9): 92-100.
[9] XU Tian-hui, GUO Qiang, ZHANG Cai-ming. Time Series Data Anomaly Detection Based on Total Variation Ratio Separation Distance [J]. Computer Science, 2022, 49(9): 101-110.
[10] NIE Xiu-shan, PAN Jia-nan, TAN Zhi-fang, LIU Xin-fang, GUO Jie, YIN Yi-long. Overview of Natural Language Video Localization [J]. Computer Science, 2022, 49(9): 111-122.
[11] CAO Xiao-wen, LIANG Mei-yu, LU Kang-kang. Fine-grained Semantic Reasoning Based Cross-media Dual-way Adversarial Hashing Learning Model [J]. Computer Science, 2022, 49(9): 123-131.
[12] ZHOU Xu, QIAN Sheng-sheng, LI Zhang-ming, FANG Quan, XU Chang-sheng. Dual Variational Multi-modal Attention Network for Incomplete Social Event Classification [J]. Computer Science, 2022, 49(9): 132-138.
[13] DAI Yu, XU Lin-feng. Cross-image Text Reading Method Based on Text Line Matching [J]. Computer Science, 2022, 49(9): 139-145.
[14] QU Qian-wen, CHE Xiao-ping, QU Chen-xin, LI Jin-ru. Study on Information Perception Based User Presence in Virtual Reality [J]. Computer Science, 2022, 49(9): 146-154.
[15] ZHOU Le-yuan, ZHANG Jian-hua, YUAN Tian-tian, CHEN Sheng-yong. Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion [J]. Computer Science, 2022, 49(9): 155-161.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!