Computer Science ›› 2019, Vol. 46 ›› Issue (11A): 251-254, 259.

• Pattern Recognition & Image Processing • Previous Articles     Next Articles

Large-scale Automatic Driving Scene Reconstruction Based on Binocular Image

LI Yin-guo, ZHOU Zhong-kui, BAI Ling   

  1. (College of Computer Science and Technology,Chongqing University of Posts & Telecommunications,Chongqing 400065,China)
  • Online:2019-11-10 Published:2019-11-20

Abstract: The large-scale smart driving scene reconstruction can feedback the surrounding road traffic environment information for the vehicle control system in the vehicle driving environment,and realize the visualization of the environmental information.At present,the existing three-dimensional reconstruction scheme is mainly oriented to thestructuredscene,and it is difficult to meet the real-time performance required by the smart driving system while ensuring a certain precision which can make when the three-dimensional reconstruction of the large-scale unstructured smart driving scene is performed.In order to solve this problem,a three-dimensional scene reconstruction method based on binocular vision is proposed.Firstly,by optimizing the stereo matching strategy,the stereo matching efficiency is improved,and then the uniform distance feature point extraction algorithm RSD is proposed to reduce the time consumption of 3D point cloud computing and triangulation,and the real-time performance of large-scale smart driving scene reconstruction is improved.The experimental results prove the effectiveness of this algorithm,which can be used to reconstruct the scene of large-scale smart driving scene,and can meet the demand of intelligent driving system in real-time.

Key words: Intelligent driving scene reconstruction, Binocular vision, Feature extraction, Stereo matching, Depth value calculation

CLC Number: 

  • TP391.41
[3]ZHANG X Y,GAO H B,GUO M,et al.A study on key technologies of unmanned driving[J].CAAI Transactions on Intelligence Technology,2016,1(1):4-13.
[4]陈辉,马世伟,Andreas Nuechter.基于激光扫描和SFM的非同步点云三维重构方法[J].仪器仪表学报,2016,37(5):1148-1157.
[8]BAYKANT B,ALAGO Z.Obtaining Depth Maps FromColorImages By Region Based Stereo Matching Algorithms[J].OncuBilim Algorithm And Systems Labs,2008,8(4):122-134.
[11]YU L,ZHANG D R, HOLDEN E J.A fast and fully automatic registration approach based on point features for multi-source remote-sensing images[J].Computers and Geosciences,2007,34(7):838-848.
[12]HARRIS C,STEPHENS M J.A combined corner and edge detector[C]∥Proceedingsof Fourth Alvey Vision Conference.Manchester.England:IEEE,1998:147-151.
[13]LOWE D G.Distinctive Image Features from Scale-InvariantKeypoints[J].International Journal of Computer Vision,2004,60(2):92-109.
[14]BAY H,ESS A,TUYTELAARS T,et al.Speeded-Up Robust Features (SURF)[J].Computer Vision and Image Understanding,2007,110(3):346-359.
[15]RUBLEE E, RABAUD V, KONOLIGE K,et al.ORB:an efficient alternative to SIFT or SURF[C]∥IEEE International Conference on Computer Vision.2011:2564-2571.
[16]MUJAM,LOWE D G.Fast approximate nearest neighborswith automaticalgorithm configuration[C]∥Proceedingsof IEEE Conference on Computer Vision Theory and Applications.Lisbon,Portugal:IEEE Computer Society,2009:331-340.
[17]CANDÉS E J,ROMBERG J K,TAO T.Stable signal recovery from incomplete and inaccurate measurements[J].Communications on Pure and Applied Mathematics,2006,59(8):1-15.
[1] ZHOU Yan, ZENG Fan-zhi, WU Chen, LUO Yue, LIU Zi-qin. 3D Shape Feature Extraction Method Based on Deep Learning [J]. Computer Science, 2019, 46(9): 47-58.
[2] DU Zhen, MA Li-peng, SUN Guo-zi. Network Traffic Anomaly Detection Based on Wavelet Analysis [J]. Computer Science, 2019, 46(8): 178-182.
[3] SHE Rong-rong, ZHANG Li-ping. Method for Identifying and Recommending Reconstructed Clones Based on Software Evolution History [J]. Computer Science, 2019, 46(8): 224-232.
[4] HAN Hui,WANG Li-ming,CHAI Yu-mei,LIU Zhen. Text Sentiment Classification Based on Deep Forests with Enhanced Features [J]. Computer Science, 2019, 46(7): 172-179.
[5] ZHAO Zi-yang, JIANG Mu-rong, HUANG Ya-qun, HAO Jian-yu, ZENG Ke. Single Image Depth Estimation Algorithm Based on SFS and Binocular Model [J]. Computer Science, 2019, 46(6A): 161-164.
[6] LI Yue-feng. 3D Retrieval Algorithm Based on Multi-feature [J]. Computer Science, 2019, 46(6A): 266-269.
[7] HAN Xiao, ZHANG Jing, LI Yue-long. Gesture Recognition Based on Hand Geometric Distribution Feature [J]. Computer Science, 2019, 46(6A): 246-249.
[8] HE Xiao-wen, HU Yi-fei, WANG Hai-ping, CHEN Mo. Online Learning Nonnegative Matrix Factorization [J]. Computer Science, 2019, 46(6A): 473-477.
[9] ZHOU Bin-bin, ZHANG Hong-jun, ZHANG Rui, FENG Yun-tian, XU You-wei. Construction of Military Corpus for Entity Annotation [J]. Computer Science, 2019, 46(6A): 540-546.
[10] MENG Zhi-qing, XU Wei-wei. Temporal Text Data Stream Feature Trend Model and Algorithm [J]. Computer Science, 2019, 46(6A): 417-422.
[11] XU Lei, WANG Jian-xin. Data Mining Algorithm of Abnormal Network Based on Fuzzy Neural Network [J]. Computer Science, 2019, 46(4): 73-76.
[12] LIU Xiao-hong, ZHU Yu-quan, LIU Zhe, SONG Yu-qing, ZHU Yan, YUAN De-qi. Liver CT Image Feature Extraction Method Based on Improved Multi-scale LBP Algorithm [J]. Computer Science, 2019, 46(3): 125-130.
[13] LI Yin-min, XUE Kai-xin, GAO Zan, XUE Yan-bin, XU Guang-ping, ZHANG Hua. 3-D Model Retrieval Algorithm Based on Residual Network [J]. Computer Science, 2019, 46(3): 148-153.
[14] CHEN Wei, LIU Yan, LEI Qing. Classification of Small Difference Behavior Characteristics Based on Intelligent Vision [J]. Computer Science, 2019, 46(3): 298-302.
[15] SHENG Lei, WEI Zhi-hua, ZHANG Peng-yu. Multi-layer Object Detection Algorithm Based on Multi-source Feature Late Fusion [J]. Computer Science, 2019, 46(2): 249-254.
Full text



[1] DU Wei, DING Shi-fei. Overview on Multi-agent Reinforcement Learning[J]. Computer Science, 2019, 46(8): 1 -8 .
[2] GAO Li-zheng, ZHOU Gang, LUO Jun-yong, LAN Ming-jing. Survey on Meta-event Extraction[J]. Computer Science, 2019, 46(8): 9 -15 .
[3] CAI Li, LI Ying-zi, JIANG Fang, LIANG Yu. Study on Clustering Mining of Imbalanced Data Fusion Towards Urban Hotspots[J]. Computer Science, 2019, 46(8): 16 -22 .
[4] YANG Zhen, WANG Hong-jun. Important Location Identification of Mobile Users Based on Trajectory Division and Density Clustering Method[J]. Computer Science, 2019, 46(8): 23 -27 .
[5] DENG Cun-bin, YU Hui-qun, FAN Gui-sheng. Integrating Dynamic Collaborative Filtering and Deep Learning for Recommendation[J]. Computer Science, 2019, 46(8): 28 -34 .
[6] ZHONG Feng-yan, WANG Yan, LI Nian-shuang. Node Selection Scheme for Data Repair in Heterogeneous Distributed Storage Systems[J]. Computer Science, 2019, 46(8): 35 -41 .
[7] SUN Guo-dao, ZHOU Zhi-xiu, LI Si, LIU Yi-peng, LIANG Rong-hua. Spatio-Temporal Evolution of Geographical Topics[J]. Computer Science, 2019, 46(8): 42 -49 .
[8] ZHANG Hui-bing, ZHONG Hao, HU Xiao-li. User Reviews Clustering Method Based on Topic Analysis[J]. Computer Science, 2019, 46(8): 50 -55 .
[9] LI Bo-jia, ZHANG Yang-sen, CHEN Ruo-yu. Method for Generating Massive Data with Assignable Distribution[J]. Computer Science, 2019, 46(8): 56 -63 .
[10] LU Xian-guang, DU Xue-hui, WANG Wen-juan. Alert Correlation Algorithm Based on Improved FP Growth[J]. Computer Science, 2019, 46(8): 64 -70 .