Computer Science ›› 2021, Vol. 48 ›› Issue (9): 345-351.doi: 10.11896/jsjkx.200500059
• Information Security • Previous Articles
ZHANG Shi-peng, LI Yong-zhong
CLC Number:
[1]GAO N,GAO L,GAO Q,et al.An Intrusion Detection Model Based on Deep Belief Networks[C]//2014 Second International Conference on Advanced Cloud and Big Data.IEEE,2014:247-252. [2]QIAN Y Y,LI Y Z,YU X Y.Intrusion Detection Method Based on Multi-label and Semi-Supervised Learning[J].Computer Science,2015,42(2):134-136. [3]NESPOLI P,PAPAMARTZIVANOS D,MÁRMOL F G,et al.Optimal Countermeasures Selection Against Cyber Attacks:A Comprehensive Survey on Reaction Frameworks[J].IEEE Communications Surveys & Tutorials,2017,20(2):1361-1396. [4]DÍAZ-LÓPEZ D,DÓLERA-TORMO G,GÓMEZ-MÁRMOL F,et al.Dynamic Counter-Measures for Risk-Based Access Control Systems:An Evolutive Approach[J].Future Generation Computer Systems,2016,55:321-335. [5]LU Y.Research on a New Hybrid Intrusion Detection Algo-rithm for Cloud Computing[J].Journal of Chongqing University of Technology (Natural Science),2020,34(10):153-159. [6]LI Y Z,ZHANG J.Intrusion Detection Algorithm Based onCluster and Cloud Model[J].Computer Science,2015(2):33. [7]GAO L Y,TIAN Z S,LI L X,et al.A SVDD-Based Method for WLAN Indoor Passive Intrusion[J].Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition),2020,32(2):200-209. [8]ZHANG Y S,JIANG S Y.Research on Network Intrusion Detection Based on Rick Data Mining Tracking Technology[J].Journal of Chongqing University of Technology (Natural Scien-ce),2019,33(10):127-135. [9]HINTON G E,OSINDERO S,TEH Y W.A Fast Learning Algorithm For Deep Belief Nets[J].Neural Computation,2006,18(7):1527-1554. [10]WEI P,LI Y,ZHANG Z,et al.An Optimization Method for Intrusion Detection Classification Model Based on Deep Belief Network[J].IEEE Access,2019,7:87593-87605. [11]YANG Y Q,ZHENG K F,WU B,et al.Network Intrusion Detection Based on Supervised Adversarial Variational Auto-Encoder with Regularization[J].IEEE Access,2020,8:42169-42184. [12]LI Y Z,ZHANG S P,LI Y,et al.Research on Intrusion Detection Algorithm Based on Deep Learning and Semi-Supervised Clustering[J].International Journal of Cyber Research and Education (IJCRE),2020,2(2):38-60. [13]VINCENT P,LAROCHELLE H,BENGIO Y,et al.Extracting and composing robust features with denoising autoencoders[C]//Proceedings of the 25th International Conference on Machine Learning.ACM,2008:1096-1103. [14]YAO Y Y.Three-way decision:an interpretation of rules inrough set theory[C]//International Conference on Rough Sets and Knowledge Technology.Berlin,Heidelberg:Springer,2009:642-649. [15]ZHANG Y B,MIAO D Q,ZHANG Z F.Multi-granularity text sentiment classification model based on three-way decisions[J].Computer Science,2017,44(12):188-193. [16]ZHANG L B,LI H X,ZHOU X Z,et al.Sequential three-way decision based on multi-granular autoencoder features[J].Information Sciences,2020,507:630-643. [17]LIU D,LIANG D C.Generalized three-way decisions and special three-way decisions[J].Journal of Frontiers of Computer Scien-ce and Technology,2017,11(3):502-510. [18]MALDONADO S,PETERS G,WEBER R.Credit scoringusing three-way decisions with probabilistic rough sets[J].Information Sciences,2020,507:700-714. [19]YAO Y Y.Granular computing and sequential three-way decisions[C]//International Conference on Rough Sets and Knowle-dge Technology.Berlin,Heidelberg:Springer,2013:16-27. [20]SENTHILNAYAKI B,VENKATALAKSHMI K,KANNANA.Intrusion Detection System using Fuzzy Rough Set Feature Selection and Modified KNN Classifier[J].International Arab Journal of Information Technology,2019,16(4):746-753. [21]AL-QATF M,LASHENG Y,AL-HABIB M,et al.Deep lear-ning approach combining sparse autoencoder with SVM for network intrusion detection[J].IEEE Access,2018,6:52843-52856. [22]REN J D,LIU X Q,WANG Q,et al.A Multi-Level Intrusion Detection Method Based on KNN Outlier Detection and Random Forests[J].Journal of Computer Research and Development,2019,56(3):566-575. [23]DING Y,LI Y Z.Research on Intrusion Detection Algorithm Based on PCA and Semi-Supervised Clustering[J].Journal of Shandong University (Engineering Science),2012,42(5):41-46. [24]DU Y,ZHANG Y D,LI M H,et al.Improved Fast ICA algorithm for data optimization processing in intrusion detection[J].Journal on Communications,2016,37(1):42-48. [25]GHASEMI J,ESMAILY J.Intrusion Detection Systems Using a Hybrid SVD-Based Feature Extraction Method[J].International Journal of Security and Networks,2017,12(4):230-240. [26]LIU J H,MAO S P,FU X M.Intrusion Detection Model Based on ICA Algorithm and Deep Neural Network[J].NetinfoSecu-rity,2019,19(3):1-10. [27]FENG W Y,GUO X B,HE Y Y,et al.Intrusion DetectionModel Based on Feedforward Neural Network[J].Netinfo Security,2019,19(9):101-105. [28]SHONE N,NGOC T N,PHAI V D,et al.A Deep Learning Approach to Network Intrusion Detection[J].IEEE Transactions on Emerging Topics in Computational Intelligence,2018,2(1):41-50. |
[1] | LIU Xin, WANG Jun, SONG Qiao-feng, LIU Jia-hao. Collaborative Multicast Proactive Caching Scheme Based on AAE [J]. Computer Science, 2022, 49(9): 260-267. |
[2] | LIU Jie-ling, LING Xiao-bo, ZHANG Lei, WANG Bo, WANG Zhi-liang, LI Zi-mu, ZHANG Hui, YANG Jia-hai, WU Cheng-nan. Network Security Risk Assessment Framework Based on Tactical Correlation [J]. Computer Science, 2022, 49(9): 306-311. |
[3] | WANG Guan-yu, ZHONG Ting, FENG Yu, ZHOU Fan. Collaborative Filtering Recommendation Method Based on Vector Quantization Coding [J]. Computer Science, 2022, 49(9): 48-54. |
[4] | WANG Xin-tong, WANG Xuan, SUN Zhi-xin. Network Traffic Anomaly Detection Method Based on Multi-scale Memory Residual Network [J]. Computer Science, 2022, 49(8): 314-322. |
[5] | ZHAO Dong-mei, WU Ya-xing, ZHANG Hong-bin. Network Security Situation Prediction Based on IPSO-BiLSTM [J]. Computer Science, 2022, 49(7): 357-362. |
[6] | ZHANG Yuan, KANG Le, GONG Zhao-hui, ZHANG Zhi-hong. Related Transaction Behavior Detection in Futures Market Based on Bi-LSTM [J]. Computer Science, 2022, 49(7): 31-39. |
[7] | ZENG Zhi-xian, CAO Jian-jun, WENG Nian-feng, JIANG Guo-quan, XU Bin. Fine-grained Semantic Association Video-Text Cross-modal Entity Resolution Based on Attention Mechanism [J]. Computer Science, 2022, 49(7): 106-112. |
[8] | CHENG Cheng, JIANG Ai-lian. Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction [J]. Computer Science, 2022, 49(7): 120-126. |
[9] | DU Hong-yi, YANG Hua, LIU Yan-hong, YANG Hong-peng. Nonlinear Dynamics Information Dissemination Model Based on Network Media [J]. Computer Science, 2022, 49(6A): 280-284. |
[10] | LIU Wei-ye, LU Hui-min, LI Yu-peng, MA Ning. Survey on Finger Vein Recognition Research [J]. Computer Science, 2022, 49(6A): 1-11. |
[11] | DENG Kai, YANG Pin, LI Yi-zhou, YANG Xing, ZENG Fan-rui, ZHANG Zhen-yu. Fast and Transmissible Domain Knowledge Graph Construction Method [J]. Computer Science, 2022, 49(6A): 100-108. |
[12] | ZHOU Zhi-hao, CHEN Lei, WU Xiang, QIU Dong-liang, LIANG Guang-sheng, ZENG Fan-qiao. SMOTE-SDSAE-SVM Based Vehicle CAN Bus Intrusion Detection Algorithm [J]. Computer Science, 2022, 49(6A): 562-570. |
[13] | CAO Yang-chen, ZHU Guo-sheng, SUN Wen-he, WU Shan-chao. Study on Key Technologies of Unknown Network Attack Identification [J]. Computer Science, 2022, 49(6A): 581-587. |
[14] | LYU Peng-peng, WANG Shao-ying, ZHOU Wen-fang, LIAN Yang-yang, GAO Li-fang. Quantitative Method of Power Information Network Security Situation Based on Evolutionary Neural Network [J]. Computer Science, 2022, 49(6A): 588-593. |
[15] | WEI Hui, CHEN Ze-mao, ZHANG Li-qiang. Anomaly Detection Framework of System Call Trace Based on Sequence and Frequency Patterns [J]. Computer Science, 2022, 49(6): 350-355. |
|