计算机科学 ›› 2021, Vol. 48 ›› Issue (6): 338-342.doi: 10.11896/jsjkx.201200239

• 信息安全 • 上一篇    下一篇

基于遗传优化PNN神经网络的网络安全态势评估

王金恒1, 单志龙2, 谭汉松3, 王煜林1   

  1. 1 广州理工学院计算机科学与工程学院 广州510540
    2 华南师范大学计算机学院 广州510631
    3 中南大学计算机学院 长沙410006
  • 收稿日期:2020-12-31 修回日期:2021-03-06 出版日期:2021-06-15 发布日期:2021-06-03
  • 通讯作者: 王煜林(43498000@qq.com)
  • 基金资助:
    国家自然科学基金项目(61671213);广东省质量工程建设项目(2020SZL02);广东省教学改革建设项目(2018SJG04)

Network Security Situation Assessment Based on Genetic Optimized PNN Neural Network

WANG Jin-heng1, SHAN Zhi-long2, TAN Han-song3, WANG Yu-lin1   

  1. 1 School of Computer Science & Engineering,Guangzhou Institute of Science and Technology,Guangzhou 510540,China
    2 School of Computer Science,South China Normal University,Guangzhou 510631,China
    3 School of Computer Science,Central South University,Changsha 410006,China
  • Received:2020-12-31 Revised:2021-03-06 Online:2021-06-15 Published:2021-06-03
  • About author:WANG Jin-heng,born in 1982,master,lecturer.Her main research interests include computer network technology,artificial intelligence and cloud computing.(11403404@qq.com)
    WANG Yu-lin,born in 1982,master,associate professor.His main research interests include network security and cloud computing.
  • Supported by:
    National Natural Science Foundation of China(61671213),Quality Engineering Construction Project of Guangdong Province,China(2020SZL02) and Teaching Reform and Construction Project of Guangdong Province, China(2018SJG04).

摘要: 为提高网络安全态势评估的准确率,提出了一种基于遗传优化概率神经网络的网络安全态势评估。首先,在网络安全态势评估建模过程中,根据网络安全态势特点和常见评估等级建立了概率神经网络的网络安全态势评估模型,以便充分挖掘概率神经网络在网络安全态势评估细粒度方面的优势。然后,为了防止因网络安全态势参数细粒度评估而造成收敛速度过慢的情况发生,对概率神经网络的修正因子进行遗传算法优化,并再次进行概率神经网络训练,从而得到稳定的概率网络安全态势评估模型。经过实验证明,相比传统的概率神经网络算法,基于遗传算法优化概率神经网络的网络安全态势评估准确度更高,平均准确率达到90%以上,且训练速度更快。

关键词: 概率神经网络, 网络安全态势, 网络攻击, 遗传算法

Abstract: In order to improve the performance of network security situation assessment,this paper presents a network security situation assessment method based on genetic optimization probabilistic neural network.Firstly,In the process of network security situation assessment modeling,according to the characteristics of network security situation and common evaluation levels,the network security situation assessment model of PNN neural network is established,and the advantages of PNN neural network in fine-grained network security situation assessment are fully exploited.Then,in order to prevent the slow convergence caused by the fine-grained evaluation of network security situation parameters,the correction factors of PNN are left,and then the stable PNN network security situation assessment model is obtained by iterative training of PNN neural network.Experiments show that compared with the traditional PNN neural network algorithm,by using genetic algorithm to optimize the PNN network security situation assessment classification,evaluation accuracy is higher,average accuracy rate is more than 90%,and training speed is faster.

Key words: Genetic algorithm, Network attack, Network security situation, Probabilistic neural network

中图分类号: 

  • TP393.08
[1]LIU J,SU P R.Review of software and network security [J].Acta Sinica Sinica,2018,29(1):42-68.
[2]SONG J,TANG G L.Research and application of network security situation awareness technology [J].Communication Technology,2018(6):187-192.
[3]XIE L X,WANG Z H.Network security situation assessment method based on cuckoo search Optimized BP neural network [J].Computer Applications,2017,37(7):1926-1930.
[4]LIU H,LIU J H,HUI X Y.Network security situation assessment based on cloud model and Markov chain [J].Computer and Digital Engineering,2019(6):155-159.
[5]YE L,TAN Z J.A network security situation assessment me-thod based on deep learning [J].Intelligent Computer and Application,2019,9(6):73-75.
[6]HAN X L,LIU Y,ZHANG Z J,et al.Overview of network security situation awareness theory and technology and Research on difficult problems [J].Information Security and Communication Security,2019(7):61-71.
[7]OLIMID R F.SecRet:How to Apply the 5E Model for a Master’s Level Network Security Course[J].IEEE Communications Magazine,2019,57(11):54-59.
[8]FENG S,XIONG Z,NIYATO D,et al.Joint Traffic Routing and Virtualized Security Function Activation in Wireless Multihop Networks[J].IEEE Transactions on Vehicular Technology,2019,68(99):9205-9219.
[9]LU Z,QU G,LIU Z.A Survey on Recent Advances in Vehicular Network Security,Trust,and Privacy[J].IEEE Transactions on Intelligent Transportation Systems,2019,20(2):760-776.
[10]MAZURCZYK W,BISSON P,JOVER R P,et al.Challengesand Novel Solutions for 5G Network Security,Privacy and Trust[J].IEEE Wireless Communications,2020,27(4):6-7.
[11]SEVINÇ E,COŞAR A.An Evolutionary Genetic Algorithm for Optimization of Distributed Database Queries[J].2018,54(5):717-725.
[12]KANTOUR N,BOUROUBI S.Cryptanalysis of Merkle-Hell-man cipher using parallel genetic algorithm[J].Mobile Networks and Applications,2019(8):1-12.
[13]JIA W,ZHAO D,ZHENG Y,et al.A novel optimized GA-Elman neural network algorithm[J].Neural Computing and Applications,2019,31(6):1-11.
[14]QU X H,SHI X M.Research on network security situation assessment technology based on analytic hierarchy process [J].Automation Technology and Application,2018,37(11):43-45.
[15]WU J T,QIAO Y F,ZHU S F,et al.Network security situation assessment and prediction method based on HMM [J].Navigation and Control,2018(2):13-20,34.
[16]HUANG Z H.Heuristic network security situation prediction based on simplex vector machine [J].Journal of Hunan Institute of Engineering (Natural Science Edition),2020,30(1):53-56.
[17]CAO J M.Research on Network Security Framework of Hyperheuristic SVM for Big Data [J].Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition),2020,32(1):23-29.
[18]ZARCA A M,BERNABE J B,SKARMETA A,et al.VirtualIoT HoneyNets to mitigate cyberattacks in SDN/NFV-enabled IoT networks[J].IEEE Journal on Selected Areas in Communications,2020,38(99):1262-1277.
[19]UBARHANDE S D,DOYE D D,NALWADE P S.A timestamp-based algorithm to improve security and performance of mobile ad hoc network[J].Wireless Networks,2019,25(4):1867-1874.
[20]ZHU N,YAO S H,ZHENG X L.Analysis and Model Establishment for Mobile Communication Network Risk Evaluation Index System[J].Journal of Chongqing Technology and Business University(Natural Science Edition),2020,37(3):100-106.
[21]LI X.A Real-time Prediction Method of Network Security Risk Based on Predictive Model [J].Journal of Chongqing University of Technology(Natural Science),2019,33(2):132-137.
[1] 杨浩雄, 高晶, 邵恩露.
考虑一单多品的外卖订单配送时间的带时间窗的车辆路径问题
Vehicle Routing Problem with Time Window of Takeaway Food ConsideringOne-order-multi-product Order Delivery
计算机科学, 2022, 49(6A): 191-198. https://doi.org/10.11896/jsjkx.210400005
[2] 宋涛, 李秀华, 李辉, 文俊浩, 熊庆宇, 陈杰.
大数据时代下车联网安全加密认证技术研究综述
Overview of Research on Security Encryption Authentication Technology of IoV in Big Data Era
计算机科学, 2022, 49(4): 340-353. https://doi.org/10.11896/jsjkx.210400112
[3] 沈彪, 沈立炜, 李弋.
空间众包任务的路径动态调度方法
Dynamic Task Scheduling Method for Space Crowdsourcing
计算机科学, 2022, 49(2): 231-240. https://doi.org/10.11896/jsjkx.210400249
[4] 吴善杰, 王新.
基于AGA-DBSCAN优化的RBF神经网络构造煤厚度预测方法
Prediction of Tectonic Coal Thickness Based on AGA-DBSCAN Optimized RBF Neural Networks
计算机科学, 2021, 48(7): 308-315. https://doi.org/10.11896/jsjkx.200800110
[5] 郑增乾, 王锟, 赵涛, 蒋维, 孟利民.
带宽和时延受限的流媒体服务器集群负载均衡机制
Load Balancing Mechanism for Bandwidth and Time-delay Constrained Streaming Media Server Cluster
计算机科学, 2021, 48(6): 261-267. https://doi.org/10.11896/jsjkx.200400131
[6] 左剑凯, 吴杰宏, 陈嘉彤, 刘泽源, 李忠智.
异构无人机编队防御及评估策略研究
Study on Heterogeneous UAV Formation Defense and Evaluation Strategy
计算机科学, 2021, 48(2): 55-63. https://doi.org/10.11896/jsjkx.191100053
[7] 石琳姗, 马创, 杨云, 靳敏.
基于SSC-BP神经网络的异常检测算法
Anomaly Detection Algorithm Based on SSC-BP Neural Network
计算机科学, 2021, 48(12): 357-363. https://doi.org/10.11896/jsjkx.201000086
[8] 姚泽玮, 林嘉雯, 胡俊钦, 陈星.
基于PSO-GA的多边缘负载均衡方法
PSO-GA Based Approach to Multi-edge Load Balancing
计算机科学, 2021, 48(11A): 456-463. https://doi.org/10.11896/jsjkx.210100191
[9] 高帅, 夏良斌, 盛亮, 杜宏亮, 袁媛, 韩和同.
基于投影圆度和遗传算法的空间圆柱面拟合方法
Spatial Cylinder Fitting Based on Projection Roundness and Genetic Algorithm
计算机科学, 2021, 48(11A): 166-169. https://doi.org/10.11896/jsjkx.201100057
[10] 高基旭, 王珺.
一种基于遗传算法的多边缘协同计算卸载方案
Multi-edge Collaborative Computing Unloading Scheme Based on Genetic Algorithm
计算机科学, 2021, 48(1): 72-80. https://doi.org/10.11896/jsjkx.200800088
[11] 吉顺慧, 张鹏程.
基于支配关系的数据流测试用例生成方法
Test Case Generation Approach for Data Flow Based on Dominance Relations
计算机科学, 2020, 47(9): 40-46. https://doi.org/10.11896/jsjkx.200700021
[12] 董明刚, 黄宇扬, 敬超.
基于遗传实例和特征选择的K近邻训练集优化方法
K-Nearest Neighbor Classification Training Set Optimization Method Based on Genetic Instance and Feature Selection
计算机科学, 2020, 47(8): 178-184. https://doi.org/10.11896/jsjkx.190700089
[13] 梁正友, 何景琳, 孙宇.
一种用于微表情自动识别的三维卷积神经网络进化方法
Three-dimensional Convolutional Neural Network Evolution Method for Facial Micro-expression Auto-recognition
计算机科学, 2020, 47(8): 227-232. https://doi.org/10.11896/jsjkx.190700009
[14] 杨德成, 李凤岐, 王祎, 王胜法, 殷慧殊.
智能3D打印路径规划算法
Intelligent 3D Printing Path Planning Algorithm
计算机科学, 2020, 47(8): 267-271. https://doi.org/10.11896/jsjkx.190700184
[15] 包振山, 郭俊南, 谢源, 张文博.
基于LSTM-GA的股票价格涨跌预测模型
Model for Stock Price Trend Prediction Based on LSTM and GA
计算机科学, 2020, 47(6A): 467-473. https://doi.org/10.11896/JsJkx.190900128
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!