计算机科学 ›› 2022, Vol. 49 ›› Issue (7): 18-24.doi: 10.11896/jsjkx.210600126

• 数据库&大数据&数据科学* 上一篇    下一篇

基于概率元学习的矩阵补全预测融合算法

齐秀秀, 王佳昊, 李文雄, 周帆   

  1. 电子科技大学信息与软件工程学院 成都610054
  • 收稿日期:2021-06-16 修回日期:2021-10-21 出版日期:2022-07-15 发布日期:2022-07-12
  • 通讯作者: 王佳昊(wangjh@uestc.edu.cn)
  • 作者简介:(xiuxqihm@gmail.com)
  • 基金资助:
    电子科技大学-智小金-智能家居联合研究中心项目(H04W210180);内江市科技孵化和成果转化专项资金(2021KJFH004)

Fusion Algorithm for Matrix Completion Prediction Based on Probabilistic Meta-learning

QI Xiu-xiu, WANG Jia-hao, LI Wen-xiong, ZHOU Fan   

  1. School of Information and Software Engineering,University of Electronic Science and Technology of China,Chengdu 610054,China
  • Received:2021-06-16 Revised:2021-10-21 Online:2022-07-15 Published:2022-07-12
  • About author:QI Xiu-xiu,born in 1992,postgraduate.Her main research interests include meta learning,few-shot learning,social network knowledge discovery and data mining.
    WANG Jia-hao,born in 1978,Ph.D,associate professor,is a member of China Computer Federation.His main research interests include IoT,information security and data mining
  • Supported by:
    UESTC-ZHIXIAOJING Joint Research Center of Smart Home(H04W210180) and Neijiang Technology Incubation and Transformation Funds(2021KJFH004).

摘要: 随着互联网社交媒体规模的飞速发展,利用推荐算法对海量信息进行有效建模筛选和过滤,成为了研究用户行为偏好、热点倾向和网络安全态势等问题的关键。随着深度学习的发展,图神经网络模型在解决推荐系统应用中的密集型图结构数据时取得了较好效果。协同过滤算法作为得到最广泛应用的推荐算法,其利用用户-项目的群体交互数据来预测用户未来的偏好与项目评级。但现有的推荐算法仍面临着数据稀疏和冷启动问题,且缺少对不确定性的良好量化。文中提出了一种基于概率元学习的归纳矩阵补全预测融合算法(MetaIMC),该算法从贝叶斯推断的角度重新对元学习进行表征,构建了稳健的图深度神经网络元学习模型,充分利用数据先验知识提出从稀疏数据中学习新任务的解决方案。首先,MetaIMC可以有效地利用变分贝叶斯推理获得先验分布,缓解元模型任务训练中的不确定性和模糊性问题,进一步提升了模型的泛化能力;其次,在不借助任何用户边信息的情况下,实现新用户推荐的冷启动;最后,在传统矩阵补全及用户冷启动两个场景下,利用Flixster,Douban和Yahoo_music 3个公开数据集对模型的性能进行了评估,验证了MetaIMC在面对传统矩阵补全任务时的有效性,并在冷启动问题上达到了最优的效果。

关键词: 变分贝叶斯推断, 矩阵补全, 图神经网络, 推荐系统, 元学习

Abstract: With the rapid development of Internet social media,using recommendation algorithms to effectively model and filter massive amounts of information has become the key to predict user behavior preferences,hot spot tendency,network security si-tuation and other issues.At the same time,with the development of deep learning,graph neural network model has achieved good results in solving the dense graph structure data in recommendation system.Collaborative filtering algorithm,as the most widely used recommendation algorithm,uses user-item group interaction data to predict users' future preferences and item ratings.However,existing recommendation algorithms still face the problems of data sparseness and cold start,and lack of a good quantification of uncertainty.This paper proposes an inductive matrix completion prediction fusion algorithm based on probabilistic meta-learning(MetaIMC),which re-characterizes meta-learning from the perspective of Bayesian inference,builds a robust GNN-meta-learning model,and makes full use of data priors to build solutions for learning new tasks from sparse data.Firstly,MetaIMC can effectively use variational Bayesian inference to obtain the prior distribution,alleviate the uncertainty and ambiguity in the meta-model task training,and further improve the generalization ability of the model.Secondly,MetaIMC can implement new user reco-mmendations and solve the cold start problem without any user side information.Finally,in the two scenarios of traditional matrix completion and user cold start,the performance of the model is evaluated by using three public datasets of Flixster,Douban and Yahoo_music,which verifies the effectiveness of MetaIMC on traditional matrix completion task,and achieves the best performance on the cold start problem.

Key words: Graph neural network, Matrix completion, Meta-learning, Recommendation system, Variational Bayesian inference

中图分类号: 

  • TP181
[1]PAZZANI M J,BILLSUS D.Content-based recommendationsystems[M]//The adaptive Web.Berlin:Springer,2007:325-341.
[2]GOLDBERG D,NICHOLS D,OKI B M,et al.Using collaborative filtering to weave an information tapestry[J].Communications of the ACM,1992,35(12):61-70.
[3]HAMILTON W,YING Z,LESKOVEC J.Inductive representation learning on large graphs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.2017:1025-1035.
[4]KALOFOLIAS V,BRESSON X,BRONSTEIN M,et al.Matrix completion on graphs[J].arXiv:1408.1717,2014.
[5]RAO N.Collaborative Filtering with Graph Information:Consistency and Scalable Methods[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems.2015:2107-2115.
[6]MONTI F,BRONSTEIN M M,BRESSON X.Geometric matrix completion with recurrent multi-graph neural networks[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.2017:3700-3710.
[7]BERG R,KIPF T N,WELLING M.Graph convolutional matrix completion [EB/OL].(2017-10-25)[2018-07-28].http://ar-xiv.org/abs/1706.02263.
[8]ZHANG M,CHEN Y.Inductive matrix completion based ongraph neural networks[C]//International Conference on Lear-ning Representations.2020.
[9]FINN C,ABBEEL P,LEVINE S.Model-agnostic meta-learning for fast adaptation of deep networks[C]//International Confe-rence on Machine Learning.PMLR,2017:1126-1135.
[10]JAMALI M,ESTER M.A matrix factorization technique with trust propagation for recommendation in social networks[C]//Proceedings of the Fourth ACM Conference on Recommender Systems.2010:135-142.
[11]MA H,ZHOU D,LIU C,et al.Recommender systems with social regularization[C]//Proceedings of the Fourth ACM International Conference on Web Search and Data Mining.2011:287-296.
[12]DROR G,KOENIGSTEIN N,KOREN Y,et al.The Yahoo! Music Dataset and KDD-Cup'11[C]//Proceedings of KDD Cup 2011.PMLR,San Diego,CA,USA,2012:3-18.
[13]CANDÉS E J,RECHT B.Exact matrix completion via convex optimization[J].Foundations of Computational Mathematics,2009,9(6):717-772.
[14]ZHANG M,CHEN Y.Weisfeiler-lehman neural machine forlink prediction[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mi-ning.2017:575-583.
[15]LI X,CHEN H.Recommendation as link prediction in bipartite graphs:A graph kernel-based machine learning approach[J].Decision Support Systems,2013,54(2):880-890.
[16]HUISMAN M,VAN RIJN J N,PLAAT A.A survey of deep meta-learning[J].Artificial Intelligence Review,2021,54(6):4483-4541.
[17]BEAL M J.Variational algorithms for approximate Bayesian inference [D].London:UCL(University College London),2003.
[18]RAVI S,BEATSON A.Amortized Bayesian Meta-Learning[C]//International Conference on Learning Representations(ICLR).2019.
[19]AMIT R,MEIR R.Meta-learning by adjusting priors based on extended PAC-Bayes theory[C]//International Conference on Machine Learning.PMLR,2018:205-214.
[20]FINN C,XU K,LEVINE S.Probabilistic model-agnostic meta-learning[C]//International Conference on Neural Information Processing Systems(NIPS).2018:9537-9548.
[21]YOON J,KIM T,DIA O,et al.Bayesian model-agnostic meta-learning[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems.2018:7343-7353.
[22]GRANT E,FINN C,LEVINE S,et al.Recasting gradient-based meta-learning as hierarchical bayes[C]//International Confe-rence on Learning Representations(ICLR).2018.
[23]SCARSELLI F,GORI M,TSOI A C,et al.The graph neural network model[J].IEEE transactions on neural networks,2008,20(1):61-80.
[24]SCHLICHTKRULL M,KIPF T N,BLOEM P,et al.Modeling relational data with graph convolutional networks[C]//Euro-pean semantic web conference.Cham:Springer,2018:593-607.
[25]BISHOP C M,NASRABADI N M.Pattern recognition and machine learning[M].New York:Springer,2006.
[26]RAO N,YU H F,RAVIKUMAR P,et al.Collaborative Filtering with Graph Information:Consistency and Scalable Methods[C]//NIPS.2015.
[27]MONTI F,BRONSTEIN M M,BRESSON X.Geometric matrix completion with recurrent multi-graph neural networks[C]//International Conference on Neural Information Processing Systems.2017:3700-3710.
[28]HARTFORD J,GRAHAM D,LEYTON-BROWN K,et al.Deep models of interactions across sets[C]//International Conference on Machine Learning.PMLR,Stockholm,2018:1909-1918.
[29]RAVI S,BEATSON A.Amortized bayesian meta-learning[C]//International Conference on Learning Representations.2019.
[1] 程章桃, 钟婷, 张晟铭, 周帆.
基于图学习的推荐系统研究综述
Survey of Recommender Systems Based on Graph Learning
计算机科学, 2022, 49(9): 1-13. https://doi.org/10.11896/jsjkx.210900072
[2] 王冠宇, 钟婷, 冯宇, 周帆.
基于矢量量化编码的协同过滤推荐方法
Collaborative Filtering Recommendation Method Based on Vector Quantization Coding
计算机科学, 2022, 49(9): 48-54. https://doi.org/10.11896/jsjkx.210700109
[3] 周芳泉, 成卫青.
基于全局增强图神经网络的序列推荐
Sequence Recommendation Based on Global Enhanced Graph Neural Network
计算机科学, 2022, 49(9): 55-63. https://doi.org/10.11896/jsjkx.210700085
[4] 秦琪琦, 张月琴, 王润泽, 张泽华.
基于知识图谱的层次粒化推荐方法
Hierarchical Granulation Recommendation Method Based on Knowledge Graph
计算机科学, 2022, 49(8): 64-69. https://doi.org/10.11896/jsjkx.210600111
[5] 方义秋, 张震坤, 葛君伟.
基于自注意力机制和迁移学习的跨领域推荐算法
Cross-domain Recommendation Algorithm Based on Self-attention Mechanism and Transfer Learning
计算机科学, 2022, 49(8): 70-77. https://doi.org/10.11896/jsjkx.210600011
[6] 闫佳丹, 贾彩燕.
基于双图神经网络信息融合的文本分类方法
Text Classification Method Based on Information Fusion of Dual-graph Neural Network
计算机科学, 2022, 49(8): 230-236. https://doi.org/10.11896/jsjkx.210600042
[7] 帅剑波, 王金策, 黄飞虎, 彭舰.
基于神经架构搜索的点击率预测模型
Click-Through Rate Prediction Model Based on Neural Architecture Search
计算机科学, 2022, 49(7): 10-17. https://doi.org/10.11896/jsjkx.210600009
[8] 杨炳新, 郭艳蓉, 郝世杰, 洪日昌.
基于数据增广和模型集成策略的图神经网络在抑郁症识别上的应用
Application of Graph Neural Network Based on Data Augmentation and Model Ensemble in Depression Recognition
计算机科学, 2022, 49(7): 57-63. https://doi.org/10.11896/jsjkx.210800070
[9] 蔡晓娟, 谭文安.
一种改进的融合相似度和信任度的协同过滤算法
Improved Collaborative Filtering Algorithm Combining Similarity and Trust
计算机科学, 2022, 49(6A): 238-241. https://doi.org/10.11896/jsjkx.210400088
[10] 何亦琛, 毛宜军, 谢贤芬, 古万荣.
基于点割集图分割的矩阵变换与分解的推荐算法
Matrix Transformation and Factorization Based on Graph Partitioning by Vertex Separator for Recommendation
计算机科学, 2022, 49(6A): 272-279. https://doi.org/10.11896/jsjkx.210600159
[11] 郭亮, 杨兴耀, 于炯, 韩晨, 黄仲浩.
基于注意力机制和门控网络相结合的混合推荐系统
Hybrid Recommender System Based on Attention Mechanisms and Gating Network
计算机科学, 2022, 49(6): 158-164. https://doi.org/10.11896/jsjkx.210500013
[12] 熊中敏, 舒贵文, 郭怀宇.
融合用户偏好的图神经网络推荐模型
Graph Neural Network Recommendation Model Integrating User Preferences
计算机科学, 2022, 49(6): 165-171. https://doi.org/10.11896/jsjkx.210400276
[13] 邓朝阳, 仲国强, 王栋.
基于注意力门控图神经网络的文本分类
Text Classification Based on Attention Gated Graph Neural Network
计算机科学, 2022, 49(6): 326-334. https://doi.org/10.11896/jsjkx.210400218
[14] 洪志理, 赖俊, 曹雷, 陈希亮, 徐志雄.
基于遗憾探索的竞争网络强化学习智能推荐方法研究
Study on Intelligent Recommendation Method of Dueling Network Reinforcement Learning Based on Regret Exploration
计算机科学, 2022, 49(6): 149-157. https://doi.org/10.11896/jsjkx.210600226
[15] 余皑欣, 冯秀芳, 孙静宇.
结合物品相似性的社交信任推荐算法
Social Trust Recommendation Algorithm Combining Item Similarity
计算机科学, 2022, 49(5): 144-151. https://doi.org/10.11896/jsjkx.210300217
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!