计算机科学 ›› 2024, Vol. 51 ›› Issue (11A): 231000033-6.doi: 10.11896/jsjkx.231000033
王春东, 张嘉凯
WANG Chundong, ZHANG Jiakai
摘要: 入侵检测是网络安全中的一项重要任务,旨在检测异常行为和潜在攻击。近几年,深度学习方法在入侵检测任务中取得了很大突破。但随着近几年互联网行业的迅猛发展,新型攻击类型不断增加,深度学习方法在测试中面对新型类别时,往往会以高置信度给出一个已知类别中的预测结果,导致无法识别未知攻击。基于此,提出一种基于不确定性建模的开放集识别方法,即将MC-Dropout应用于深度学习分类器中以捕获不确定性,从而获得高质量预测概率。该开放集合识别方法不仅能够对已知类别进行分类,同时还能够对未知类别进行判别。通过在CICIDS2017数据集上验证,所提出的方法能够实现对未知类别的检测,和其他现有方法相比具有一定的先进性,各项指标与基准模型对比均取得最好表现,能有效地应用于现实的网络环境。
中图分类号:
[1]GU J,WANG L H,WANG H W,et al.A novel approach to intrusion detection using SVM ensemble with feature augmentation[J].Comput.Secur.,2019,86:53-62. [2]BELOUCH M,EL HADAJ S,IDHAMMAD M,et al.Performance evaluation of intrusion detection based on machine learning using Apache Spark[J].Procedia Computer Science,2018,127:1-6. [3]NASR M,BAHRAMALI A,HOUMANSADR A,et al.DeepCorr:Strong Flow Correlation Attacks on Tor Using Deep Learning[C]//Proceedings of the 2018 ACM SIGSAC Confe-rence on Computer and Communications Security.2018. [4]LI X K,CHEN W,ZHANG Q R,et al.Building Auto-Encoder Intrusion Detection System based on random forest feature se-lection[J].Comput.Secur.,2020,95:101851. [5]XIAO Y H,XING C,ZHANG T N,et al.An Intrusion Detection Model Based on Feature Reduction and Convolutional Neural Networks[J].IEEE Access,2019,7:42210-42219. [6]SCHEIRER W J,DE REZENDE ROCHA A,SAPKOTA A,et al.Toward Open Set Recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(7):1757-1772. [7]CRUZ S,COLEMAN C,RUDD E M,et al.Open set intrusion recognition for fine-grained attack categorization[C]//2017 IEEE International Symposium on Technologies for Homeland Security(HST).Waltham,MA,USA,2017:1-6. [8]RUDD E M,JAIN L P,SCHEIRER W J,et al.The Extreme Value Machine[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2018,40(3):762-768. [9]HENRYDOSS J,CRUZ S,RUDD E M,et al.Incremental Open Set Intrusion Recognition Using Extreme Value Machine[C]//2017 16th IEEE International Conference on Machine Learning and Applications(ICMLA).Cancun,Mexico,2017:1089-1093. [10]SHU L,XU H,LIU B.Doc:Deep open classification of text documents[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing.2017:2911-2916. [11]HASSEN M,CHAN P K.Learning a neural-network-based rep-resentation for open set recognition[C]//Proceedings of the 2020 SIAM International Conference on Data Mining.SIAM,2020:154-162. [12]SHIEH C S,LIN W W,NGUYEN T T,et al.Detection of unknown ddos attacks with deep learning and gaussian mixture model[J].Applied Sciences,2021,11(11):5213. [13]LAI Y,PING G,WU Y,et al.Opensmax:Unknown domaingeneration algorithm detection[J].Frontiers in Artificial Intelligence and Applications,2020,325:1850-1857. [14]ZHANG Y,NIU J,GUO D,et al.Unknown network attack detection based on open set recognition[J].Procedia Computer Science,2020,174:387-392. [15]LIU A,WANG Y,LI T.SFE-GACN:A novel unknown attack detection under insufficient data via intra categories generation in embedding space[J].Computers & Security,2021,105:102262. [16]GUO J,GUO S,MA S,et al.Conservative Novelty Synthesizing Network for Malware Recognition in an Open-Set Scenario[J].IEEE Transactions on Neural Networks and Learning Systems,34(2):662-676. [17]VAZE S,HAN K,VEDALOI A,et al.Open-Set Recognition:Good Closed-Set Classifier is All You Need[J].arXiv:2110.06207,2022. [18]HASSEN M,CHAN P K.Learning a Neural-network-basedRepresentation for Open Set Recognition[C]//SDM.2018. |
|